岩土力学 ›› 2021, Vol. 42 ›› Issue (6): 1549-1556.doi: 10.16285/j.rsm.2020.1427

• 基础理论与实验研究 • 上一篇    下一篇

基于微孔填充和毛细管凝聚理论的持水曲线模型

刘樟荣1,叶为民1, 2,崔玉军3,朱合华1, 2,王琼1, 2,陈永贵1, 2   

  1. 1. 同济大学 地下建筑与工程系,上海 200092;2. 同济大学 岩土及地下工程教育部重点实验室,上海 200092; 3. 法国国立路桥大学 纳维实验室,法国 巴黎 77455
  • 收稿日期:2020-09-21 修回日期:2021-03-05 出版日期:2021-06-11 发布日期:2021-06-15
  • 通讯作者: 叶为民,男,1963年生,博士,教授,博士生导师,主要从事环境地质、非饱和土力学方面的研究与教学工作。E-mail: ye_tju@tongji.edu.cn E-mail: liuzr@tongji.edu.cn
  • 作者简介:刘樟荣,男,1990年生,博士,博士后,主要从事非饱和土力学与工程地质方面的研究工作。
  • 基金资助:
    国家重点研发计划(No.2019YFC1509900);国家自然科学基金(No.42002291,No.42030714,No.41807237);中国博士后科学基金(No.2020M671217)。

Water retention curve model based on micro-pore filling and capillary condensation theories

LIU Zhang-rong1, YE Wei-min1, 2, CUI Yu-jun3, ZHU He-hua1, 2, WANG Qiong1, 2, CHEN Yong-gui1, 2   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3. Laboratoire Navier, Ecole des Ponts ParisTech, Paris 77455, France
  • Received:2020-09-21 Revised:2021-03-05 Online:2021-06-11 Published:2021-06-15
  • Supported by:
    This work was supported by the National Key R&D Program of China(2019YFC1509900), the National Natural Science Foundation of China(42002291, 42030714, 41807237) and the China Postdoctoral Science Foundation(2020M671217).

摘要: 持水曲线是研究非饱和土的渗透、强度和体变等水力?力学特性的重要工具。大多数既有持水曲线模型未能反映非饱和土的持水机制或形式较复杂,且对双峰或多峰形态的持水曲线模拟效果欠佳。在分析非饱和土持水机制的基础上,将持水曲线划分为吸附和毛细持水域;再基于微孔填充理论,结合Kelvin定律,构建了吸附持水曲线模型;同时基于毛细管凝聚理论,结合Young-Laplace方程,构建了毛细持水曲线模型;然后通过吸附和毛细持水曲线模型的叠加,建立了全吸力范围内非饱和土的持水曲线模型。采用该模型对上海软土、西安黄土、南阳膨胀土、桂林红黏土、辽西风积土和内蒙古高庙子膨润土等6种代表性非饱和土的实测持水曲线进行了模拟。结果表明,该模型形式简单,参数物理意义明确,且反映了非饱和土的吸附和毛细作用持水机制,可适用于模拟不同条件不同类型土体的不同形状持水曲线。

关键词: 非饱和土, 持水曲线, 微孔填充, 毛细管凝聚, 持水模型

Abstract: Water retention curve (WRC) is an important tool to study the hydraulic and mechanical properties of unsaturated soils, such as permeability, strength and deformation properties. Most of the existing WRC models fail to reflect the water retention mechanisms of unsaturated soils or they are complex in form, and these models are hard to give good performance on modelling the bimodal and multimodal WRCs. In this study, based on analyzing the water retention mechanisms of unsaturated soils, the WRC was divided into two domains that are governed by adsorption and capillary mechanisms, respectively. An adsorption water retention curve model (WRCM) was developed based on micro-pore filling theory and Kelvin’s law. A capillary WRCM was established based on the capillary condensation theory and Young-Laplace equation. Then, a new water retention curve model over the full suction range was built by superposing the adsorption and capillary WRCMs. Finally, the new model was validated through modelling the experimentally measured WRCs of six representative unsaturated soils, including Shanghai soft clay, Xi’an loess, Nanyang expansive soil, Guilin lateritic clay, Western Liaoning aeolian soil and Inner Mongolia Gaomiaozi (GMZ) bentonite. Results showed that the proposed model, which was simple in form with definite physical meaning parameters and successfully reflected the adsorption and capillary mechanisms of water retention, was able to simulate WRCs with different shapes for different types of soils under different conditions.

Key words: unsaturated soils, water retention curve (WRC), micro-pore filling, capillary condensation, water retention model

中图分类号: 

  • TU43
[1] 秦爱芳, 孟红苹, 江良华. 电渗−堆载作用下非饱和土轴对称固结特性分析[J]. 岩土力学, 2022, 43(S1): 97-106.
[2] 曾立峰, 邵龙潭, 郭晓霞, . 土中有效应力概念的起源与发展[J]. 岩土力学, 2022, 43(S1): 127-144.
[3] 汪磊, 张立婷, 沈思东, 徐永福, 夏小和. 分段循环荷载作用下非饱和土轴对称固结特性研究[J]. 岩土力学, 2022, 43(S1): 203-212.
[4] 翟张辉, 张亚国, 李同录, 肖书雄, . 考虑边界效应的非饱和土圆柱孔扩张问题解析[J]. 岩土力学, 2022, 43(S1): 301-311.
[5] 王智超, 罗磊, 田英辉, 张春会, . 非饱和压实土率敏性及蠕变时效特征试验研究[J]. 岩土力学, 2022, 43(7): 1816-1824.
[6] 王海曼, 倪万魁, 刘魁, . 延安压实黄土土−水特征曲线的快速预测方法[J]. 岩土力学, 2022, 43(7): 1845-1853.
[7] 高游, 李泽, 孙德安, 于海浩, 陈波, . 考虑初始孔隙比影响的单/双峰土−水特征曲线 模型研究[J]. 岩土力学, 2022, 43(6): 1441-1452.
[8] 仉文岗, 顾鑫, 刘汉龙, 张青, 王林, 王鲁琦, . 基于贝叶斯更新的非饱和土坡参数概率 反演及变形预测[J]. 岩土力学, 2022, 43(4): 1112-1122.
[9] 舒进辉, 马强, 周凤玺, 李强, . 非饱和土地基中P1波通过波阻板的传播特性研究[J]. 岩土力学, 2022, 43(4): 1135-1146.
[10] 朱悦璐, 陈磊, . 基于最小作用原理的Richards方程变分解[J]. 岩土力学, 2022, 43(1): 119-126.
[11] 林志强, 钱建固, 时振昊, . 毛细−吸附作用下考虑孔隙比影响的单/双峰 土体持水曲线模型[J]. 岩土力学, 2021, 42(9): 2499-2506.
[12] 刘丽, 吴羊, 李旭, 赵煜鑫, . 压实度对宽级配土水力特性的影响研究[J]. 岩土力学, 2021, 42(9): 2545-2555.
[13] 秦爱芳, 江良华, 许薇芳, 梅国雄, . 连续渗透边界下非饱和土竖井地基固结解析解[J]. 岩土力学, 2021, 42(5): 1345-1354.
[14] 凌道盛, 赵天浩, 钮家军, 朱松, 单振东, . 混合非齐次边界下非饱和土一维固结解析解[J]. 岩土力学, 2021, 42(4): 883-891.
[15] 王立安, 张家玮, 李奎奎, 刘生纬, . 饱和-非饱和土双层地基在振动压路机 作用下的振动响应[J]. 岩土力学, 2021, 42(11): 3182-3190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[2] 梁桂兰,徐卫亚,谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. , 2010, 31(2): 535 -540 .
[3] 马文涛. 基于灰色最小二乘支持向量机的边坡位移预测[J]. , 2010, 31(5): 1670 -1674 .
[4] 于琳琳,徐学燕,邱明国,闫自利,李鹏飞. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. , 2010, 31(8): 2448 -2452 .
[5] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .
[6] 王海波,徐 明,宋二祥. 基于硬化土模型的小应变本构模型研究[J]. , 2011, 32(1): 39 -43 .
[7] 曹光栩,宋二祥,徐 明. 山区机场高填方地基工后沉降变形简化算法[J]. , 2011, 32(S1): 1 -5 .
[8] 刘华丽 ,朱大勇 ,钱七虎 ,李宏伟. 边坡三维端部效应分析[J]. , 2011, 32(6): 1905 -1909 .
[9] 刘年平 ,王宏图 ,袁志刚 ,刘竟成. 砂土液化预测的Fisher判别模型及应用[J]. , 2012, 33(2): 554 -557 .
[10] 王卫东 ,李永辉 ,吴江斌 . 超长灌注桩桩-土界面剪切模型及其有限元模拟[J]. , 2012, 33(12): 3818 -3824 .