岩土力学 ›› 2022, Vol. 43 ›› Issue (5): 1364-1373.doi: 10.16285/j.rsm.2021.1300

• 数值分析 • 上一篇    下一篇

蠕滑错断-强震时序作用下跨活断裂 隧道变形破坏机制初步研究

崔臻1, 2,盛谦1,李建贺3,付兴伟4   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 长江勘测规划设计研究有限责任公司,湖北 武汉 430010;4. 中国长江三峡集团有限公司,北京 100038
  • 收稿日期:2021-08-06 修回日期:2021-12-20 出版日期:2022-05-11 发布日期:2022-05-02
  • 作者简介:崔臻,男,1986年生,博士,研究员,主要从事岩土工程静动力稳定性评价研究。
  • 基金资助:
    国家自然科学基金资助项目(No. 51779253,No. 52079133);深部岩土力学与地下工程国家重点实验室开放基金课题(No. SKLGDUEK1912);长江科学院开放研究基金资助项目(No. CKWV2019746/KY);暨南大学“重大工程灾害与控制”教育部重点实验室项目(No. 20200904002)

Deformation and failure of a tunnel subjected to the coupling effect of a quasi-static faulting and seismic impact

CUI Zhen1, 2, SHENG Qian1, LI Jian-he3, FU Xing-wei4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing, 100049, China; 3. Changjiang Institute of Survey, Planning, Design and Research Co., Ltd., Wuhan, Hubei 430010, China; 4. China Three Gorges Corporation, Beijing 100038, China
  • Received:2021-08-06 Revised:2021-12-20 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51779253, 52079133), the Open Fund Project of state Key Laboratory of Geo-mechanics and Deep Underground Engineering (SKLGDUEK1912), the Open Research Foundation of Changjiang River Scientific Research Institute (CKWV2019746/KY) and the Project of Key Laboratory of Major Engineering Disasters and Control, Ministry of Education, Jinan University (20200904002).

摘要: 在以往对跨活断裂隧道变形破坏机制研究中,往往分别单独研究蠕滑错断与强震两种效应,忽略了在强震区两种效应往往同时对隧道具有威胁的可能性。基于此,讨论了蠕滑错断-强震时序作用对强震区隧道的影响。在室内试验数据的基础上,考虑相对错动条件下岩石-衬砌接触面、隧道混凝土衬砌材料的非线性弱化特征,研究隧道在先后发生活断裂错断与强震作用下的变形响应与破坏特征。引入了“柔性铰接”设计概念作为隧道的针对性工程措施,并验证了铰接设计的效果。开展了详细的参数研究,讨论了铰接设计中一些重要设计参数的影响。研究结果表明:(1)仅受到断层作用时,隧道的影响与破坏仅限于断层带部分,而隧道的其他部分基本保持相对完好;(2)隧道衬砌在蠕滑错断-强震时序作用下,隧道衬砌出现了明显的椭圆形变形和顶板沉降,导致隧道衬砌沿起拱线也出现明显的破坏现象。具有初始错断损伤的隧道在地震作用下会遭受更严重的破坏,破坏程度随初始错断距离的增加而增加;(3)铰接设计可以在时序组合作用下减少相对变形并提高隧道的安全程度,但铰接设计带来的安全程度的提高仅限于设防范围内;(4)建议设防长度的最佳范围为略大于断层宽度即可,节段长度越小,对改善隧道安全裕度越有利,而增加错断缝宽度几乎并不能提高隧道在蠕滑错断-强震时序组合下的表现。研究成果作为初步探索,可为进一步提高我国西部强震区地下工程的抗震抗错断能力提供一定的参考。

关键词: 隧道, 断层错动, 强震, 岩-混凝土相互作用, 柔性接头

Abstract: In previous studies on the mechanisms of deformation and failure of tunnels across active faults, the two effects of quasi-static faulting and seismic excitation were often studied separately, ignoring the possibility that the two effects are often threatening to the tunnel at the same time in the high seismic risk zone. In this study, sophisticated numerical methods and constitutive models were used to study the effect of combined fault rupture deformation and subsequent seismic excitation upon a tunnel. The weakening of the rock-tunnel interface under relative dislocation and degradation of the concrete material in the tunnel liner were considered. The deformation response and failure mechanism of the tunnel subjected to combined fault rupture deformation and subsequent seismic excitation were investigated. Relative deformation time histories, plastic strain, tensile strain of the tunnel were studied. And the performance of “joint” design was numerically verified, followed by a detailed parameter study that aimed to provide deep insight into the design factors of the technique of “flexible jointing”. The influences of some important factors were investigated, such as the range of the joints, length of the segments, and infill material properties. The results indicated that: (1) When solely affected by the faulting, the influence and damage to the tunnel are limited within the fault zone, while the other parts of the tunnel remain relatively intact. (2) Under the combined fault rupture deformation and subsequent seismic excitation, notable ovaling deformation and roof settlement would occur in the tunnel liner, also the tunnel spring line would suffer significate damage. Tunnels with initial faulting induced damage would suffer more damage under the action of earthquakes, and the damage degree increases with the increasing initial faulting distance. (3) The flexible joint design could decrease the tunnel’s relative deformation under the combined effect and enhance the stability of the tunnel. However, it should be noted that this benefit would be limited within the fortification range. (4) The suggested range of the fortification would be slightly larger than the width of the fault. A smaller segment length is preferred to improve the tunnel’s stability. And it seems that the width of the joint is irrelevant with the performance of the tunnel under the combined effect. As a preliminary exploration, current research results provide a certain reference for further improving the seismic resistance and fault resistance of underground engineering in strong earthquake areas in western China.

Key words: tunnel, quasi-static faulting, strong earthquake, rock-concrete interaction, joint design

中图分类号: 

  • TU 452
[1] 张治国, 叶铜, 张成平, PAN Y T, 吴钟腾, . Stokes二阶波作用下斜坡海床中盾构隧道周围 砂土渗流压力响应分析[J]. 岩土力学, 2022, 43(6): 1635-1659.
[2] 冯忠居, 孟莹莹, 张聪, 赖德金, 朱继新, 林路宇, . 强震作用下液化场地群桩动力响应及p-y曲线[J]. 岩土力学, 2022, 43(5): 1289-1298.
[3] 张聪, 冯忠居, 孟莹莹, 关云辉, 陈慧芸, 王振, . 单桩与群桩基础动力时程响应差异振动台试验[J]. 岩土力学, 2022, 43(5): 1326-1334.
[4] 刘映晶, 杨杰, 尹振宇, . 内部侵蚀对地下结构影响的数值分析: 在隧道渗漏问题上的应用[J]. 岩土力学, 2022, 43(5): 1383-1390.
[5] 杨建华, 黄启欢, 姚池, 张小波, 周创兵, 陶铁军. 空洞对隧道喷射混凝土爆破振动特性 及安全评价的影响研究[J]. 岩土力学, 2022, 43(5): 1401-1411.
[6] 朱旻, 陈湘生, 张国涛, 庞小朝, 苏栋, 刘继强, . 花岗岩残积土硬化土模型参数反演及工程应用[J]. 岩土力学, 2022, 43(4): 1061-1072.
[7] 张闯, 任松, 吴斐, 刘杰, 周旭晖, . 循环荷载下含层理页岩渗透特性试验研究[J]. 岩土力学, 2022, 43(3): 649-658.
[8] 李鹏飞, 勾宝亮, 朱萌, 高晓静, 郭彩霞. 基于镜像法的隧道地表沉降时间效应计算方法[J]. 岩土力学, 2022, 43(3): 799-807.
[9] 王永红, 杜文, 张国辉, 宋扬, . 基于广义张−朱强度准则的深埋隧道 围岩塑性分析及应用探讨[J]. 岩土力学, 2022, 43(3): 819-830.
[10] 刘维正, 戴晓亚, 孙康, 艾国平, 雷涛. 地铁盾构隧道近距离上穿既有线路 纵向变形计算方法[J]. 岩土力学, 2022, 43(3): 831-842.
[11] 张魁, 杨长, 陈春雷, 彭赐彩, 刘杰, . 激光辅助TBM盘形滚刀压头侵岩缩尺试验研究[J]. 岩土力学, 2022, 43(1): 87-96.
[12] 王祖贤, 施成华, 刘建文. 非对称推力作用下盾构隧道附加响应的解析解[J]. 岩土力学, 2021, 42(9): 2449-2460.
[13] 李元海, 刘德柱, 杨硕, 孔骏, . 深部复合地层TBM隧道围岩应力与变形 规律模型试验研究[J]. 岩土力学, 2021, 42(7): 1783-1793.
[14] 刘成禹, 罗洪林, 李红军, 张向向, . 岩脉型岩爆的形成机制及控制技术—— 以乌兹别克斯坦卡姆奇克隧道为例[J]. 岩土力学, 2021, 42(5): 1413-1423.
[15] 宋战平, 郭德赛, 徐甜, 华伟雄, . 基于非线性模糊层次分析法的TBM 施工风险评价模型研究[J]. 岩土力学, 2021, 42(5): 1424-1433.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .