岩土力学 ›› 2021, Vol. 42 ›› Issue (5): 1424-1433.doi: 10.16285/j.rsm.2020.0973

• 岩土工程研究 • 上一篇    下一篇

基于非线性模糊层次分析法的TBM 施工风险评价模型研究

宋战平1, 2,郭德赛1,徐甜1,华伟雄3, 4   

  1. 1. 西安建筑科技大学 土木工程学院,陕西 西安 710055;2. 西安建筑科技大学 陕西省岩土与地下空间工程重点实验室,陕西 西安 710055; 3. 中国铁建大桥工程局集团有限公司,天津 300300;4. 中铁建大桥工程局集团第二工程有限公司,广州 深圳 518083
  • 收稿日期:2020-07-08 修回日期:2021-01-04 出版日期:2021-05-11 发布日期:2021-05-08
  • 作者简介:宋战平,男,1974年生,博士,教授,主要从事隧道和地下工程方面的教学和工作。
  • 基金资助:
    国家自然科学基金资助项目(No. 51578447);陕西省创新能力支撑计划-创新团队(No. 2020TD-005);陕西省住房城乡建设科技计划项目(No. 2019-K39)

Risk assessment model in TBM construction based on nonlinear fuzzy analytic hierarchy process

SONG Zhan-ping1, 2, GUO De-sai1, XU Tian1, HUA Wei-xiong3, 4   

  1. 1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China; 2. Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China; 3. China Railway Construction Bridge Engineering Bureau Group Co., Ltd., Tianjin 300300, China; 4. China Railway Construction Bridge Engineering Bureau Group No.2 Engineering Co., Ltd., Shenzhen, Guangdong 518083, China
  • Received:2020-07-08 Revised:2021-01-04 Online:2021-05-11 Published:2021-05-08
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51578447), the Innovation Capability Support Plan of Shaanxi Province- Innovation Team (2020TD-005) and the Science and Technology Project of Housing Urban-rural Construction in Shaanxi Province (2019-K39).

摘要: 隧道掘进机(tunnel boring machine,简称TBM)施工风险评价受到众多不确定因素影响,传统的模糊层次分析法(fuzzy analytic hierarchy process,简称FAHP)使用线性算子计算风险等级,易造成某些突出风险因素的影响被弱化,引起最终评价结果的准确性降低。将非线性算子引入到传统FAHP的综合计算中,建立了基于非线性FAHP的TBM施工风险评价新模型。基于作业分解结构法(WBS)和风险分解结构法(RBS),构建了TBM施工风险指标体系;采用层次分析法计算风险评价指标体系中所有风险因素的权重,结合专家评价法得到的隶属度向量构造模糊关系矩阵;引入非线性算子对风险权重和模糊关系矩阵进行综合分析;在此基础上根据最大隶属度原则,得到TBM施工的最终风险等级。将构建的新模型应用到在建深圳地铁羊台山隧道TBM穿越F2-2次生断层施工的风险分析中,得出TBM穿越该断层洞段施工风险等级为4级,属较高风险。基于羊台山隧道工程实例,讨论了新模型和传统FAHP评价方法的区别,进一步验证了新模型的可靠性。

关键词: 隧道工程, TBM施工, 风险评价, 非线性, 模糊层次分析法

Abstract: Risk assessment of tunnel boring machine (TBM) construction is affected by many uncertain factors. The traditional fuzzy analytic hierarchy process (FAHP) tends to weaken the influence of some prominent risk factors due to the use of linear operators for calculating risk levels, reducing the accuracy of the final assessment results. This paper introduced a nonlinear operator into the comprehensive calculation of traditional FAHP, and established a new risk assessment model for TBM construction based on the nonlinear FAHP. Based on the work breakdown structure method (WBS) and the risk breakdown structure method (RBS), a risk assessment index system for TBM construction was also established. To calculate the weight of risk factors in the risk assessment index system and to construct the fuzzy relation matrix, analytic hierarchy process (AHP) and the membership vector obtained from the expert evaluation method were adopted. Through introducing the nonlinear operator, the weight of risk factors and fuzzy relation matrix were analyzed, and on this basis the final risk level for TBM construction was obtained based on the principle of the maximum membership degree. The proposed model was successfully applied to the risk assessment of a TBM crossing the F2-2 secondary fault in Yangtaishan Tunnel of Shenzhen metro and the risk level of TBM construction crossing the fault section was determined to be level 4, which was a high risk. Finally, to further verify the reliability of the proposed model, the difference between the new risk assessment model and the traditional FAHP evaluation method was discussed based on the Yangtaishan Tunnel project.

Key words: tunnel engineering, TBM construction, risk assessment, nonlinear, fuzzy analytic hierarchy process

中图分类号: 

  • TU 451
[1] 张治国, 沈安鑫, 张成平, PAN Y. T., 吴钟腾, . 基于非线性Pasternak地基模型的海床悬链线立管触地段初始侵彻静平衡解析解[J]. 岩土力学, 2021, 42(9): 2355-2374.
[2] 王兴开, 夏才初, 朱哲明, 谢文兵, 宋磊博, 韩观胜, . 单级荷载下极软煤岩长期蠕变规律及本构模型研究[J]. 岩土力学, 2021, 42(8): 2078-2088.
[3] 仇超, 李传勋, 李红军, . 单级等速加载下高压缩性软土 非线性大应变固结解析解[J]. 岩土力学, 2021, 42(8): 2195-2206.
[4] 朱淳, 何满潮, 张晓虎, 陶志刚, 尹乾, 李利峰, . 恒阻大变形锚杆非线性力学模型 及恒阻行为影响参数分析[J]. 岩土力学, 2021, 42(7): 1911-1924.
[5] 张乐, 党发宁, 高俊, 丁九龙. 线性加载条件下考虑应力历史的饱和黏土一维非线性固结渗透试验研究[J]. 岩土力学, 2021, 42(4): 1078-1087.
[6] 黄智刚, 左清军, 吴立, 陈福榜, 胡圣松, 朱盛, . 水岩作用下泥质板岩软化非线性机制研究[J]. 岩土力学, 2020, 41(9): 2931-2942.
[7] 陈国兴, 李磊, 丁杰发, 赵凯, . 巨厚沉积土夹火山岩场地非线性地震反应特性[J]. 岩土力学, 2020, 41(9): 3056-3065.
[8] 胡安峰, 周禹杉, 陈缘, 夏长青, 谢康和, . 结构性土一维非线性大应变固结半解析解[J]. 岩土力学, 2020, 41(8): 2583-2591.
[9] 魏尧, 杨更社, 申艳军, 明锋, 梁博, . 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020, 41(8): 2636-2646.
[10] 朱剑锋, 徐日庆, 罗战友, 潘斌杰, 饶春义, . 考虑固化剂掺量影响的镁质水泥固化土 非线性本构模型[J]. 岩土力学, 2020, 41(7): 2224-2232.
[11] 喻昭晟, 陈晓斌, 张家生, 董亮, ABDOULKADER M S. 粗颗粒土的静止土压力系数非线性分析与计算方法[J]. 岩土力学, 2020, 41(6): 1923-1932.
[12] 李佳龙, 李钢, 于龙. 隔离非线性平面应变单元模型及其 在Drucker-Prager模型中的应用[J]. 岩土力学, 2020, 41(5): 1492-1501.
[13] 江留慧, 李传勋, 杨怡青, 张锐. 变荷载下双层地基一维非线性固结近似解析解[J]. 岩土力学, 2020, 41(5): 1583-1590.
[14] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[15] 柯锦福, 王水林, 郑宏, 杨永涛, . 基于修正对称和反对称分解的 三维数值流形元法应用推广[J]. 岩土力学, 2020, 41(2): 695-706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 奎,高 波. 地铁隧道下穿小河和桥梁的施工方案研究[J]. , 2010, 31(5): 1509 -1516 .
[2] 杨 冰,杨 军,常 在,甘厚义,宋二祥. 土石混合体压缩性的三维颗粒力学研究[J]. , 2010, 31(5): 1645 -1650 .
[3] 叶海林,郑颖人,黄润秋,杜修力,李安洪,许江波. 强度折减动力分析法在滑坡抗滑桩抗震设计中的应用研究[J]. , 2010, 31(S1): 317 -323 .
[4] 张志沛,彭 惠,饶 晓. 软土地基注浆扩散过程数值模拟研究[J]. , 2011, 32(S1): 652 -0655 .
[5] 吴礼舟 ,张利民 ,黄润秋. 成层非饱和土渗流的耦合解析解[J]. , 2011, 32(8): 2391 -2396 .
[6] 韩建新 ,李术才 ,李树忱 ,杨为民 ,汪 雷 . 基于强度参数演化行为的岩石峰后应力-应变关系研究[J]. , 2013, 34(2): 342 -346 .
[7] 黄 达 ,岑夺丰 ,黄润秋 . 单裂隙砂岩单轴压缩的中等应变率效应颗粒流模拟[J]. , 2013, 34(2): 535 -545 .
[8] 梁耀哲. 刚性桩复合地基的主动土压力分析[J]. , 2012, 33(S1): 25 -29 .
[9] 梁桂兰 ,徐卫亚 ,何育智 ,赵志峰 ,谈小龙 . 边坡工程监测信息可视化分析系统研发及应用[J]. , 2008, 29(3): 849 -853 .
[10] 夏唐代 ,黄 睿 . 对“关于‘基于土拱效应原理求解挡土墙被动土压力’的讨论”的答复[J]. , 2013, 34(7): 2127 -2128 .