岩土力学 ›› 2023, Vol. 44 ›› Issue (2): 461-472.doi: 10.16285/j.rsm.2022.0450

• 基础理论与实验研究 • 上一篇    下一篇

考虑页岩层理剪切滑移的水力裂缝几何参数计算方法

杨焕强1, 2, 3,刘杨4,张晴晴1, 2, 3,熊冬5   

  1. 1. 长江大学 石油工程学院,湖北 武汉 430100;2. 长江大学 油气钻完井技术国家工程研究中心,湖北 武汉 430100;3. 长江大学 油气钻采工程湖北省重点实验室,湖北 武汉 430100;4. 中石油新疆油田开发公司,新疆 克拉玛依 834000;5. 中国石油大学(北京)石油工程学院,北京 102249)
  • 收稿日期:2022-04-06 接受日期:2022-09-15 出版日期:2023-02-10 发布日期:2023-02-17
  • 作者简介:杨焕强,男,1985年生,博士,副教授,主要从事页岩气体积压裂裂缝扩展数理模型及数值算法方面的研究。
  • 基金资助:
    国家自然科学基金(No. 51704037)。

Calculation method for geometric parameters of hydraulic fracture considering shear slip of shale bedding

YANG Huan-qiang1, 2, 3, LIU Yang4, ZHANG Qing-qing1, 2, 3, XIONG Dong5   

  1. 1. College of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China; 2. National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan, Hubei 430100, China; 3. Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, Hubei 430100, China; 4. PetroChina Xinjiang Oilfield Development Company, Karamay, Xinjiang 834000, China; 5. College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2022-04-06 Accepted:2022-09-15 Online:2023-02-10 Published:2023-02-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51704037).

摘要:

针对现有页岩气体积压裂层理裂缝扩展模型及其计算方法研究的不足,基于三点弯曲试验,结合数字图像法获取了页岩层理关键力学参数;利用弹性力学理论和线弹簧模型建立了页岩气体积压裂层理裂缝扩展拟三维数学模型,并得到了试验验证;开发了裂缝几何参数计算程序,计算分析了层理参数与压裂施工参数对水力裂缝扩展的影响规律。结果表明:当层理刚度小于10 GPa/m 及大于30 GPa/m 时,剪切滑移量达到极大值及极小值,且基本保持不变,当层理刚度在 10~30 GPa/m之间时,层理刚度与剪切滑移量呈线性负相关关系;当层理密度为 5~7条时,主裂缝会沟通更多的层理;当层理强度为 5~8 MPa时,水力裂缝易穿层扩展,且能使层理产生剪切滑移,从而生成复杂裂缝;当压裂液排量和压裂液黏度分别在 9~12 m3/ min和 2.5~5 mPa·s 范围内时,水力裂缝易穿层扩展,最终形成十字型裂缝,有助于复杂裂缝的形成。该研究对认识页岩层理力学性能及其对层理裂缝扩展规律的影响有一定的指导意义。

关键词: 页岩层理, 体积压裂, 三点弯曲, 拟三维模型, 剪切滑移

Abstract:

In view of the inadequacy of existing research on the bedding fracture propagation model of shale gas volume fracturing and its calculation method, the mechanical characteristic parameters of shale bedding were obtained by three-point bending (TPB) test combined with digital image method. A pseudo-three-dimensional (P3D) mathematical model of hydraulic fracture propagation in shale gas volume fracturing was established by the utilization of elastic mechanics and line spring model, which was verified by laboratory experiments. A calculation program for geometric parameters of shale bedding fractures was developed to calculated and analyzed the influence of bedding parameters and fracturing engineering parameters on the distribution of hydraulic fracture. The results show that the amount of shear slip reaches a maximum value and a minimum value when the bedding stiffness is less than  10 GPa/m and greater than 30 GPa/m, and keeps basically unchanged. And the bedding stiffness is linearly negatively correlated with the shear slip when the bedding stiffness is in the range of 10–30 GPa/m. The main fracture will communicate with more beddings when the bedding density is in the range of 5–7. The hydraulic fracture is easy to penetrate the bedding and can lead to the bedding shear slip when the bedding strength is in the range of 5–8 MPa, thereby generating a complex fracture network. Moreover, the hydraulic fracture is also inclined to pass through the bedding when the pumping rate and viscosity of fracturing fluid are in the range of 9–12 m3/min and 2.5–5 mPa·s, respectively, and finally a cross-shaped fracture is formed, which is conducive to the formation of complex fractures. This study has a certain guiding significance for understanding the mechanical properties of shale and its influence on the propagation regulation of hydraulic fracture.

Key words: shale bedding plane, volume fracturing, three-point bending (TPB), pseudo-three- dimensional (P3D) model, shear slip

中图分类号: 

  • TU 452
[1] 卢浩, 冯夏庭, 杨成祥, 张希巍, . 不同预制裂缝方法及长度对岩石三点弯曲 试验的影响[J]. 岩土力学, 2021, 42(4): 1115-1125.
[2] 白雪元, 王学滨, 舒芹, . 静水压力下内摩擦角对圆形洞室围岩局部破裂 影响的连续-非连续模拟[J]. 岩土力学, 2020, 41(7): 2485-2493.
[3] 李文轩, 卞士海, 李国英, 吴俊杰, . 粗粒料接触面模型及其在土石坝工程中的应用[J]. 岩土力学, 2019, 40(6): 2379-2388.
[4] 赵子江,刘大安,崔振东,唐铁吾,韩伟歌,. 半圆盘三点弯曲法测定页岩断裂韧度(KIC) 的实验研究[J]. , 2018, 39(S1): 258-266.
[5] 徐文彬,曹培旺,程世康,. 不同偏置裂纹充填体断裂特性试验[J]. , 2018, 39(5): 1643-1652.
[6] 李一凡,董世明,潘 鑫,李念斌,原 野. 砂岩的I/III复合型断裂试验研究[J]. , 2018, 39(11): 4063-4070.
[7] 张 强,李小春,胡少斌,牛智勇,汪 芳,范 坤,邵光强,. 高应力下花岗岩耦合节理在剪切过程中渗透率演化特性[J]. , 2018, 39(10): 3641-3650.
[8] 刘国庆,肖 明,周 浩. 地下洞室预应力锚索锚固机制及受力特性分析[J]. , 2017, 38(S1): 439-446.
[9] 邓朝福 ,刘建锋 ,陈 亮 ,李 莹 ,向 高,. 不同粒径花岗岩断裂力学行为及声发射特征研究[J]. , 2016, 37(8): 2313-2320.
[10] 周扬一,冯夏庭,徐鼎平,陈东方,李帅军,. 受弯条件下薄层灰岩的力学响应行为试验研究[J]. , 2016, 37(7): 1895-1902.
[11] 谷拴成,丁 潇. 岩体离层对锚固体荷载影响的弹塑性分析[J]. , 2013, 34(9): 2649-2654.
[12] 钱岳红 王德荣 李 杰 陈文涛. 掌子面前支撑压力带岩层变形破坏机制研究[J]. , 2011, 32(10): 3058-3064.
[13] 郦建俊,黄茂松,王卫东,陈 峥. 软土地基中扩底抗拔中长桩的极限承载力分析[J]. , 2009, 30(9): 2643-2650.
[14] 郭彦双,朱维申,李术才,林春金,温暖冬,杨 磊. 不同荷载作用下拉破裂的声发射特征研究[J]. , 2006, 27(S1): 1055-1058.
[15] 刘亚群 ,林长青 ,李海波 ,周青春,. 对现行规范以液性指数IL确定极限端阻力标准值qpk的质疑[J]. , 2003, 24(2): 246-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .