岩土力学 ›› 2023, Vol. 44 ›› Issue (8): 2205-2220.doi: 10.16285/j.rsm.2023.0120

• 基础理论与实验研究 • 上一篇    下一篇

盐穴能源储库氮气阻溶造腔气垫控制理论研究

刘 伟1,李德鹏1,高丽2,万继方3,李林1, 唐海军2,徐贵春2,姜德义1   

  1. 1. 重庆大学 煤矿灾害动力学与控制国家重点实验室,重庆 400044; 2. 中国石油化工股份有限公司江苏油田分公司石油工程技术研究院,江苏 扬州 225009; 3. 中国石油集团工程技术研究院有限责任公司,北京 102206
  • 出版日期:2023-08-21 发布日期:2023-08-21
  • 通讯作者: 李林,男,1979年生,博士,副教授,主要从事固体矿床开采理论与技术、矿山灾害动力学方面的研究。E-mail: daney0803@163.com E-mail: whrsmliuwei@126.com
  • 作者简介:刘伟,男,1986年生,博士,研究员,主要从事盐岩采卤造腔与溶腔利用、非常规天然气开采方面的研究。
  • 基金资助:
    国家自然科学基金(No. 52074046, No. 51804003);重庆英才计划“包干制”项目(No. cstc2022ycjh-bgzxm0035)。

Control theory of gas blanket in energy storage salt cavern construction with nitrogen dissolution inhibition

LIU Wei1, LI De-peng1, GAO Li2, WAN Ji-fang3, LI Lin1, TANG Hai-jun2, XU Gui-chun2, JIANG De-yi1   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. SINOPEC Jiangsu Oilfield Branch Petroleum Engineering Technology Research Institute, Yangzhou, Jiangsu 225009, China; 3. CNPC Engineering Technology R&D Company Limited, Beijing 102206, China
  • Online:2023-08-21 Published:2023-08-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52074046, 51804003) and the Chongqing Talent Program Young Top Talents (cstc2022ycjh-bgzxm0035).

摘要: 盐穴具有良好的稳定性和密闭性,是储存天然气、石油、氢气等的理想场所。传统水溶造腔采用的油垫阻溶存在阻溶效果差、卤水油污重等问题,无法满足绿色矿山建设要求。气垫作为一种替代品备受关注,但因其起步较晚、控制难度大,加之我国复杂的盐层地质条件,阻碍着其推广应用。为此,首先分析了不同造腔阶段气垫控制特点,然后在对气-液界面处压力平衡分析的基础上提出了不同阶段气垫厚度预测及注气量计算方法,结合某井建槽期实例给出了建议气垫厚度及其波动范围,探明了气垫厚度和注气量随造腔推进的变化规律,最后探讨了气垫阻溶应用相关的关键问题。研究结果表明:建槽期及收顶期以气垫厚度控制为主,建腔期及腔体修复阶段则以气-液界面位置控制为主。建议建槽期平均气垫厚度不低于0.3 m,建槽期初期气垫厚度波动迅速,应设置较大的气垫厚度并及时补注氮气,随后气垫厚度波动趋于稳定,补气时间间隔可逐渐拉长。随造腔时间增加,单次补气量越来越大,累计补气量整体呈线性增长。造腔过程中井口气压及气-液界面处气垫压力先增加后线性减小,应实时监测井口气压变化。气垫阻溶与油垫阻溶成本相近但环境效益显著,可重复利用排出氮气及井口注气设施以节约成本。现场应加强气-液界面位置监测,可采取光纤监测和中子测井相结合的方式实时准确监测界面位置信息。

关键词: 盐穴储库, 氮气阻溶, 压力平衡, 气垫设计, 气-液界面

Abstract: Salt caverns have good stability and air-tightness, and thus are ideal places for storage of natural gas, oil, hydrogen, etc. The oil blanket used in the conventional salt caverns created by solution mining has problems such as poor dissolution inhibition effect and heavy oil contamination, which cannot meet the requirements of green mine construction. As a substitute, gas blanket has attracted much attention. However, its application is hindered due to great difficulty in control, and the complex geological conditions of salt rock strata in China. To this end, the characteristics of gas blanket control at different cavern construction stages were analyzed first, and then the methods for predicting the thickness of gas blanket and calculating the gas injection amount at different stages were proposed based on the analysis of the pressure balance at the gas-liquid interface. Combined with an example of a well in the groove construction period, the recommended thickness of gas blanket and its fluctuation range were given, and the variation law of the gas blanket thickness and the gas injection amount with the cavern construction progress was proved. Finally, the key problems related to the application of gas blanket were discussed. The results showed that the gas blanket thickness is mainly controlled during the groove construction and roof formation periods, and the gas-liquid interface position is mainly controlled during the cavern construction and cavern repair periods. It is suggested that the average gas blanket thickness during the groove construction period should not be less than 0.3 m. The thickness of gas blanket fluctuates rapidly at the beginning of the groove construction period, and thus a larger gas blanket thickness should be set up and the nitrogen should be replenished in time. Then the gas blanket thickness tends to be stable, and the gas replenishment interval can be gradually extended. With the increase of cavern construction time, the single gas replenishment volume becomes larger and larger, and the cumulative gas replenishment volume increases linearly as a whole. During cavern construction, the wellhead gas pressure and the gas pressure at the gas-liquid interface increase first and then decrease linearly, and the wellhead gas pressure change shall be monitored in real time. The cost of gas blanket is close to that of oil blanket, but the environmental benefits are significant, and the discharged nitrogen and wellhead gas injection facilities can be reused to save costs. The position of gas-liquid interface should be monitored on site in real time by combining optical fiber monitoring and neutron logging.

Key words: salt cavern storage, nitrogen dissolution inhibition, pressure balance, gas blanket design, gas-liquid interface

中图分类号: 

  • TU 457
[1] 刘铁新, 李嘉琪, 邓建辉, 张正虎, 郑俊. 节理粗糙度对岩块体积的影响规律研究[J]. 岩土力学, 2023, 44(8): 2266-2275.
[2] 卢钦武, 关振长, 林林, 吴淑婧, 宋德杰. 基于静力推覆试验的山岭隧道衬砌-地层相互作用机制研究[J]. 岩土力学, 2023, 44(8): 2318-2326.
[3] 张宇, 何想, 路桦铭, 马国梁, 刘汉龙, 肖杨, . 微生物-膨润土联合矿化防渗模型试验研究[J]. 岩土力学, 2023, 44(8): 2337-2349.
[4] 李翔, 王靖童, 魏恒. 多失效模式下基于区间非概率的岩质隧道稳定可靠度分析[J]. 岩土力学, 2023, 44(8): 2409-2418.
[5] 许彬, 刘新荣, 周小涵, 梁越, 钟祖良, 刘俊, 邓志云. 考虑贯通型结构面强度震动退化的岩质边坡动力稳定性研究[J]. 岩土力学, 2023, 44(8): 2419-2431.
[6] 贾蓬, 王晓帅, 王德超. 饱水裂隙岩石冻融变形特性研究[J]. 岩土力学, 2023, 44(2): 345-354.
[7] 许明, 余小越, 赵元平, 胡家驹, 张潇婷, . 顺倾层状碎裂结构岩质边坡地震动力响应及破坏模式分析[J]. 岩土力学, 2023, 44(2): 362-372.
[8] 肖国峰. 改进的岩质凸块的超载储备极限平衡法[J]. 岩土力学, 2023, 44(2): 425-432.
[9] 张传庆, 郭宇航, 徐金顺, 刘宁, 谢起明, 崔国建, 周辉, . 基于功率谱密度的评估岩石节理粗糙度新方法[J]. 岩土力学, 2022, 43(11): 3135-3143.
[10] 赵增辉, 刘浩, 孙伟, 杨鹏, 陈宝森, . 考虑界面及损伤效应的岩体锚固系统 渐进破坏行为[J]. 岩土力学, 2022, 43(11): 3163-3173.
[11] 屈春来, 付迪, 刘世伟, 冷先伦, 李建贺, 孙熇远. 非均质成层边坡极限承载力上限分析[J]. 岩土力学, 2022, 43(10): 2923-2932.
[12] 包含, 陈志洋, 兰恒星, 裴润生, 伍法权, 晏长根, 陶悦, . 矿物定向排列致各向异性岩石渐进破坏强度特征 ——以黑云母石英片岩为例[J]. 岩土力学, 2022, 43(8): 2060-2070.
[13] 黎春林. 盾构开挖面三维曲面体破坏模型 及支护力计算方法研究[J]. 岩土力学, 2022, 43(8): 2092-2102.
[14] 杨建平, 王琛, 黄煜诚, 秦川, 陈卫忠, . 水下盾构隧道运营期管片应变增量变化规律研究[J]. 岩土力学, 2022, 43(8): 2253-2262.
[15] 张海龙, 汤杨, 任汀, 张东明, 王俊杰, 葛素刚, 大久保诚介. 复合地层隧道围岩强度实时估算研究[J]. 岩土力学, 2022, 43(7): 1877-1883.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 卢 正,姚海林,骆行文,胡梦玲. 公路交通荷载作用下分层地基的三维动响应分析[J]. , 2009, 30(10): 2965 -2970 .