岩土力学 ›› 2022, Vol. 43 ›› Issue (7): 1877-1883.doi: 10.16285/j.rsm.2021.1655

• 岩土工程研究 • 上一篇    下一篇

复合地层隧道围岩强度实时估算研究

张海龙1, 2,汤杨1,任汀3,张东明4,王俊杰5,葛素刚6,大久保诚介1   

  1. 1. 重庆文理学院 土木工程学院,重庆 402160;2. 重庆大学 土木工程学院,重庆 400044;3. 重庆三峡学院 土木工程学院,重庆 404020;4. 重庆大学 资源与安全学院,重庆 400044;5. 重庆交通大学 材料科学与工程学院,重庆 400074;6. 中铁二十三局集团第六工程有限公司,重庆 401121
  • 收稿日期:2021-09-16 修回日期:2021-12-16 出版日期:2022-07-26 发布日期:2022-08-04
  • 通讯作者: 任汀,男,1995年生,硕士,主要从事岩石力学及地下工程方面的研究工作。E-mail: tingren19@163.com E-mail:zhanghl@cqwu.edu.cn
  • 作者简介:张海龙,男,1980年生,博士,副教授,主要从事岩石力学及地下工程方面的研究工作。
  • 基金资助:
    重庆市自然科学基金(No. cstc2019jcyj-msxmX0488,No.cstc2021jcyj-msxmX0354);重庆市教委科学技术项目(No. KJQN201901338);中国博士后基金项目(No. 2021M693751);重庆文理学院重大培育项目(No. P2017JG18)

Real-time estimation of surrounding rock strength in composite strata tunnels

ZHANG Hai-long1, 2, TANG Yang1, RENG Ting3, ZHANG Dong-ming4, WANG Jun-jie5, GE Su-gang6, OKUBO Seisuke1   

  1. 1. School of Civil Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China; 2. School of Civil Engineering, Chongqing University, Chongqing 400044, China; 3. School of Civil Engineering, Chongqing Three Gorges University, Chongqing 404020, China; 4. School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China; 5. School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 6.China Railway 23rd Bureau Group 6th Engineering Co., Ltd., Chongqing 401121, China
  • Received:2021-09-16 Revised:2021-12-16 Online:2022-07-26 Published:2022-08-04
  • Supported by:
    This work was supported by the Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0488, cstc2021jcyj-msxmX0354), the Science and Technology Research Project of Chongqing Municipal Education Commission (KJQN201901338), the China Postdoctoral Science Foundation (2021M693751) and the Major Incubation Project of Chongqing University of Arts and Sciences (P2017JG18).

摘要:

隧道TBM开挖过程中经常会遇到复合岩层,在这种地质环境下,隧道掘进机(tunnel boring machine,简称TBM)开挖过程中的隧道围岩强度很难估计,隧道开挖掌子面和围岩容易发生坍塌。为了提高隧道掘进效率、预防事故发生,对开挖隧道围岩强度进行实时估算方面的研究很有必要。在重庆轨道九号线隧道TBM施工中,通过室内试验和现场实测数据发现,TBM推力FN与岩石强度成正比、TBM扭矩推力比T/FNT为扭矩)与贯入度p0.5成正比例关系。针对砂质泥岩、砂岩和灰岩组成的复合岩层,提出了一种利用现场实测推力F和扭矩T的值来快速估算开挖隧道围岩强度的方法,进一步对TBM实测数据进行线性拟合,从而得到估算公式中两个常数α1α2的取值方法,并在10多个隧道实际工程中得到验证。结果表明,对于这种复合岩层地质环境,两个常数α1α2的值与滚刀数量和滚刀直径相关。该研究成果为实时快速估算开挖隧道围岩强度提供了一种新的切实可行的思路,能提高隧道TBM施工的可靠性和安全性,具有重要的应用价值。

关键词: 复合地层, TBM, 隧道围岩, 实时估算, 可靠性

Abstract: In TBM excavation, the composite rock strata are often encountered, in such a case, it is not easy to estimate surrounding rock strength during tunneling where the tunnel face and wall tend to collapse. For improvement of tunneling efficiency and disaster prevention, it is necessary to estimate surrounding rock strength in real time. Based on laboratory tests and field data in the construction of Chongqing Railway Line 9, it was found that the thrust FN is proportional to rock strength, it was also found that the ratio of the torque force to thrust, T/FN were proportional to p0.5 (penetration p). In this study, for composite rock strata(including sandy mudstone, sandstone and limestone) surrounding tunnel, a method that can quickly estimate surrounding rock strength from thrust and torque measured in-site, was developed. The method can estimate rock strength in real time with two constants α1, α2 which can be obtained by linear fitting of the field data for TBM. The method had been already applied to more than ten tunnels. It was found that two constants were only related to the number of disc cutters n and cutter-head diameter d for this geological environment of composite rock strata. The results provide a more practical and feasible idea to estimate surrounding rock strength in real time, and also can improve the reliability and safety of tunnel TBM construction.

Key words: composite strata, TBM, surrounding rock, real-time estimation, reliability

中图分类号: 

  • TU 457
[1] 程建龙, 邹清友, 杨圣奇, 李晓昭, 梁泉, 曲磊, 梅炎, . 水力切缝上方TBM滚刀贯入破坏机制模拟研究[J]. 岩土力学, 2022, 43(8): 2317-2326.
[2] 周辉, 徐福通, 卢景景, 高阳, 肖建成, . 切槽对TBM刀具破岩机制的影响研究[J]. 岩土力学, 2022, 43(3): 625-634.
[3] 张魁, 杨长, 陈春雷, 彭赐彩, 刘杰, . 激光辅助TBM盘形滚刀压头侵岩缩尺试验研究[J]. 岩土力学, 2022, 43(1): 87-96.
[4] 蒋水华, 欧阳苏, 冯泽文, 康青, 黄劲松, 杨志刚, . 基于结构面参数概率分布更新的 节理岩质边坡可靠性分析[J]. 岩土力学, 2021, 42(9): 2589-2599.
[5] 李元海, 刘德柱, 杨硕, 孔骏, . 深部复合地层TBM隧道围岩应力与变形 规律模型试验研究[J]. 岩土力学, 2021, 42(7): 1783-1793.
[6] 徐福通, 卢景景, 周辉, 肖建成, 张传庆, 邱浩权, . 预切槽和TBM机械滚刀的 新型联合破岩模式研究[J]. 岩土力学, 2021, 42(5): 1363-1372.
[7] 宋战平, 郭德赛, 徐甜, 华伟雄, . 基于非线性模糊层次分析法的TBM 施工风险评价模型研究[J]. 岩土力学, 2021, 42(5): 1424-1433.
[8] 戴邵衡, 童晨曦, 颜瀚, 滕继东, 张升. 基于抽样可靠性的土体迂曲度计算[J]. 岩土力学, 2021, 42(3): 855-862.
[9] 薛亚东, 周杰, 赵丰, 李兴. 基于MatDEM的TBM滚刀破岩机理研究[J]. 岩土力学, 2020, 41(S1): 337-346.
[10] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[11] 吴兴征, 王瑞凯, 辛军霞, . 特定场地下土工构筑物的几何可靠性分析[J]. 岩土力学, 2020, 41(6): 2070-2080.
[12] 吴鑫林, 张晓平, 刘泉声, 李伟伟, 黄继敏. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729.
[13] 王体强, 王永志, 袁晓铭, 汤兆光, 王海, 段雪锋. 基于振动台试验的加速度积分位移方法可靠性研究[J]. 岩土力学, 2019, 40(S1): 565-573.
[14] 刘鹤, 刘泉声, 唐旭海, 罗慈友, 万文恺, 陈磊, 潘玉丛, . TBM护盾−围岩相互作用荷载识别方法[J]. 岩土力学, 2019, 40(12): 4946-4954.
[15] 彭祖昭,封 坤,肖明清,何 川,蒋 超,陈怀伟,. 基于压力拱理论的水下隧道合理覆岩厚度研究[J]. , 2018, 39(7): 2609-2616.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .