岩土力学 ›› 2019, Vol. 40 ›› Issue (12): 4946-4954.doi: 10.16285/j.rsm.2018.1932

• 数值分析 • 上一篇    下一篇

TBM护盾−围岩相互作用荷载识别方法

刘鹤1,2,刘泉声3,4,唐旭海3,4,罗慈友1,2,万文恺1,2,陈磊1,2,潘玉丛3,4   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 武汉大学 土木建筑工程学院,湖北 武汉 430072;4. 武汉大学 岩土与结构工程安全湖北省重点实验室,湖北 武汉 430072
  • 收稿日期:2018-10-19 出版日期:2019-12-11 发布日期:2020-01-04
  • 作者简介:刘鹤,男,1995年生,博士研究生,主要从事岩土工程方面的研究工作
  • 基金资助:
    国家重点基础研究发展计划项目(973计划)(No.2015CB058102);国家自然科学青年基金(No.41807250)。

Identification of the interaction loads between TBM shield and surrounding rock

LIU He1,2, LIU Quan-sheng3,4, TANG Xu-hai3,4, LUO Ci-you1,2, WAN Wen-kai1,2, CHEN Lei1,2, PAN Yu-cong3,4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Science, Beijing 100049, China; 3. School of Civil Engineering and Architecture, Wuhan University, Wuhan, Hubei 430072, China; 4. Key Laboratory of Geotechnical and Structural Safety Engineering of Hubei Province, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2018-10-19 Online:2019-12-11 Published:2020-01-04
  • Supported by:
    This work was supported by the National Program on Key Basic Research Project of China(973 Program) (2015CB058102) and the Young Scholars Program of National Natural Science Foundation of China(41807250).

摘要: 随着隧道掘进机(tunnel boring machine, TBM)开挖隧道埋深逐渐加大,穿越的地层结构更加复杂,如何降低卡机风险成为亟待解决的问题。提出了一种基于牛顿迭代和有限元理论的TBM护盾?围岩相互作用荷载反演方法。该反演方法以护盾内表面测点应变测量值与计算值的误差作为目标函数,并引入Moore-Penrose广义逆对反演方程进行求解。采用了护盾外表面有限分区的策略,定义各分区节点荷载值为反演参数,可以方便地控制反演参数的数量。各分区内部荷载通过节点值插值得到,实现了护盾表面任意分布荷载的离散拟合。算例结果表明:该反演方法计算效率高,对观测值误差具有很好的免疫效果;能够有效地获取护盾外表面的荷载分布规律和摩阻力的大小,在一定程度上能够为现场安全掘进、卡机预警以及事故处理提供指导。同时,该反演算法也可以扩展到低维情况,对其他结构受力或者物理参数的反演具有一定的借鉴意义。

关键词: 隧道掘进机(TBM), 荷载识别, 反演, 牛顿迭代

Abstract: As the buried depth of TBM-excavated tunnels increases, how to reduce the risk of TBM shield jamming becomes an urgent problem. Based on the Newton iteration and the finite element method, an inverse method for the identification of the interaction loads between shield surface and surrounding rock mass is proposed. The error between measured and calculated strain values of the observation points on the internal shield surface is set as the objective function, and the Moore-Penrose inverse is introduced to solve the inverse equation. Meanwhile, a finite partition strategy for the external shield surface is adopted, then the nodal loads of partitioned areas are defined as the inverse parameters, which is convenient for the control of the number of the inverse parameters. The loads within each partitioned region are obtained by the interpolation of the nodal loads, and the fitting of the arbitrary distributed loads acting on the external shield surface is realized. The results of numerical examples show that: the proposed inverse method is featured with high computational efficiency, and good immunity to observation error; the load distribution law and the magnitude of friction on the external shield surface can be identified effectively by performing the inverse analysis. To a certain extent, it can provide guidance for safe tunneling, jamming warning and accident treatment. Furthermore, the proposed method can also be extended to the low-dimensional cases and provide reference for the inverse analysis of other structure loads or physical parameters.

Key words: tunnel boring machine(TBM), load identification, inverse analysis, Newton iteration

中图分类号: 

  • O 319.56
[1] 刘泉声, 王栋, 朱元广, 杨战标, 伯音, . 支持向量回归算法在地应力场反演中的应用[J]. 岩土力学, 2020, 41(S1): 319-328.
[2] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[3] 吴鑫林, 张晓平, 刘泉声, 李伟伟, 黄继敏. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729.
[4] 杨艳霜, 周辉, 梅松华, 张占荣, 李金兰. 高地应力硬脆性围岩开挖损伤区时效性扩展案例分析——特征与机制[J]. 岩土力学, 2020, 41(4): 1357-1365.
[5] 阮永芬, 高春钦, 刘克文, 贾荣谷, 丁海涛, . 基于粒子群算法优化小波支持向量机的 岩土力学参数反演[J]. 岩土力学, 2019, 40(9): 3662-3669.
[6] 马春辉, 杨杰, 程琳, 李婷, 李雅琦, . 基于量子遗传算法与多输出混合核相关向量机的堆石坝材料参数自适应反演研究[J]. 岩土力学, 2019, 40(6): 2397-2406.
[7] 徐 强, 肖 明, 陈俊涛, 倪少虎, . 渗流监测数据缺失处理与渗透稳定判断[J]. 岩土力学, 2019, 40(4): 1526-1534.
[8] 许年春,吴同情,皮海洋,游 磊,吴 越,. 基于柔性承载板载荷试验的土抗剪强度参数反演研究[J]. , 2018, 39(S1): 227-234.
[9] 颜天佑,崔 臻,张勇慧,张传健,盛 谦,李建贺,. 跨活动断裂隧洞工程赋存区域地应力场分布特征研究[J]. , 2018, 39(S1): 378-386.
[10] 翟淑芳,周小平,毕 靖, . TBM滚刀破岩的广义粒子动力学数值模拟[J]. , 2018, 39(7): 2699-2707.
[11] 王庆武,巨能攀,杜玲丽,黄 健,胡 勇,. 拉林铁路桑日至加查段三维地应力场反演分析[J]. , 2018, 39(4): 1450-1462.
[12] 刘飞跃,杨天鸿,张鹏海,周靖人,邓文学,侯宪港,赵永川, . 基于声发射的岩石破裂应力场动态反演[J]. , 2018, 39(4): 1517-1524.
[13] 刘泉声,赵怡凡,张晓平,孔晓璇. 灰岩隧道掘进机隧道点荷载试验评价岩石强度方法的研究与探讨[J]. , 2018, 39(3): 977-984.
[14] 蒙 伟,何 川,汪 波,张钧博,吴枋胤,夏舞阳. 基于侧压力系数的岩爆区初始地应力场二次反演分析[J]. , 2018, 39(11): 4191-4200.
[15] 陈卫忠,马池帅,田洪铭,杨建平,. TBM隧道施工期岩爆预测方法探讨[J]. , 2017, 38(S2): 241-249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!