›› 2010, Vol. 31 ›› Issue (S1): 279-283.

• 基础理论与实验研究 • 上一篇    下一篇

考虑围护摩阻力的地铁车站结构抗浮安全设计

叶俊能1,刘干斌2   

  1. 1.宁波市轨道交通工程建设指挥部,浙江 宁波 315012;2.宁波大学 建筑工程与环境学院,浙江 宁波 315211
  • 收稿日期:2010-05-01 出版日期:2010-08-10 发布日期:2010-09-09
  • 作者简介:叶俊能,男,1975年生,博士,高级工程师,主要从事岩土工程研究与管理工作。
  • 基金资助:

    宁波市重大科研攻关项目资助(No. 2009C50004)。

Anti-floating safety design of structures in metro station considering friction resistance enclosure protection

YE Jun-neng1, LIU Gan-bin2   

  1. 1. Ningbo Urban Rail Transit Project Construction Headquarters, Ningbo, Zhejiang 315012, China; 2. Faculty of Architectural Civil Engineering and Environment, Ningbo University, Ningbo, Zhejiang 315211, China
  • Received:2010-05-01 Online:2010-08-10 Published:2010-09-09

摘要:

在地下结构抗浮设计中,较少考虑侧壁摩阻力的作用,对于侧摩阻力的的计算方法也不够明确。抗浮安全系数目前尚无统一规定,主要参照类似工程实践经验确定。在宁波轨道交通工程福庆路站抗拔桩静载试验的基础上,以地铁车站结构为研究对象,经过试验分析,对地下车站结构设计中侧壁摩阻力大小进行计算,进而考虑抗浮安全性对车站结构的临界宽度进行计算,可为地铁车站设计提供指导。

关键词: 摩阻力, 车站结构, 抗浮, 安全设计

Abstract:

In the design of underground structure, the action of the side friction is rarely considered and the determination method of the side friction is also not given in the design specification. Therefore, there is no unified regulations on anti-floating safety coefficient which can be ascertained according to the similar engineering practice. In this paper, the structure of the stations in Ningbo urban rail transit project is investigated by using the available experience and the uplift test results. The side friction of the structure is calculated; then the critical width of the station structure is ascertained when the anti-floating safety is considered. The results can provide a little of instruction on the design of metro station.

Key words: side friction, station structure, anti-floating, safety design

中图分类号: 

  • TU 46
[1] 叶观宝, 郑文强, 张 振, . 大面积填土场地中摩擦型桩负摩阻力分布特性研究[J]. 岩土力学, 2019, 40(S1): 440-448.
[2] 吴爽爽, 胡新丽, 章涵, 周昌, 龚辉, . 嵌岩桩负摩阻力现场试验与计算方法研究[J]. 岩土力学, 2019, 40(9): 3610-3617.
[3] 蔡雨, 徐林荣, 周德泉, 邓超, 冯晨曦, . 自平衡与传统静载试桩法模型试验研究[J]. 岩土力学, 2019, 40(8): 3011-3018.
[4] 竺明星, 戴国亮, 龚维明, 万志辉, 卢红前, . 水平荷载下桩身侧阻抗力矩的作用机制 与计算模型研究[J]. 岩土力学, 2019, 40(7): 2593-2607.
[5] 王钦科, 马建林, 胡中波, 王 滨, . 浅覆盖层软质岩中抗拔桩承载特性现场试验研究[J]. 岩土力学, 2019, 40(4): 1498-1506.
[6] 王永洪, 张明义, 白晓宇, 刘俊伟, . 基于光纤光栅传感技术的静压沉桩贯入特性及 影响因素研究[J]. 岩土力学, 2019, 40(12): 4801-4812.
[7] 刘海峰,朱长歧,孟庆山,王 星,李小刚,吴文娟, . 礁灰岩嵌岩桩的模型试验[J]. , 2018, 39(5): 1581-1588.
[8] 胡贺松, 陈晓斌, 唐孟雄, 廖湘英, 肖源杰, . 随钻跟管桩桩-土接触面作用机制 大型直剪试验研究[J]. 岩土力学, 2018, 39(12): 4325-4334.
[9] 姜文雨, 刘 一, . 刚性桩复合地基中性面深度与桩土应力比计算[J]. 岩土力学, 2018, 39(12): 4554-4560.
[10] 马学宁,付 江,王 军,王 旭,. 不同堆载形式对群桩负摩阻力的影响[J]. , 2018, 39(10): 3531-3538.
[11] 白晓宇,张明义,匡 政,王永洪,闫 楠,朱 磊,. 光纤光栅传感技术在GFRP抗浮锚杆现场拉拔试验中的应用[J]. , 2018, 39(10): 3891-3899.
[12] 洪成雨,刘子雄,张孟喜,周 奇,. 灌浆压力与上覆土压力对土钉摩阻力的影响研究[J]. , 2017, 38(S2): 317-322.
[13] 姚文娟,蔡晨雨. 一种新的超长桩荷载传递模型[J]. , 2016, 37(S2): 783-787.
[14] 朱冰儿,齐昌广,鲍娇蕾. 路堤荷载下塑料套管桩荷载传递机制的现场试验研究[J]. , 2016, 37(S2): 658-664.
[15] 陈国兴 ,陈 苏 ,左 熹 ,戚承志 ,杜修力 ,王志华 , . 软土场地地铁车站结构地震反应特性振动台模型试验[J]. , 2016, 37(2): 331-342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 刚,李术才,王明斌. 渗透压力作用下加锚裂隙岩体围岩稳定性研究[J]. , 2009, 30(9): 2843 -2849 .
[2] 刘玉成,曹树刚,刘延保. 可描述地表沉陷动态过程的时间函数模型探讨[J]. , 2010, 31(3): 925 -931 .
[3] 介玉新,杨光华. 基于广义位势理论的弹塑性模型的修正方法[J]. , 2010, 31(S2): 38 -42 .
[4] 杨建民,郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. , 2009, 30(1): 261 -264 .
[5] 周 华,王国进,傅少君,邹丽春,陈胜宏. 小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J]. , 2009, 30(4): 1175 -1180 .
[6] 叶 飞,朱合华,何 川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. , 2009, 30(5): 1307 -1312 .
[7] 罗 强 ,王忠涛 ,栾茂田 ,杨蕴明 ,陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. , 2011, 32(S1): 732 -0737 .
[8] 龚维明,黄 挺,戴国亮. 海上风电机高桩基础关键参数试验研究[J]. , 2011, 32(S2): 115 -121 .
[9] 汪成兵. 均质岩体中隧道围岩破坏过程的试验与数值模拟[J]. , 2012, 33(1): 103 -108 .
[10] 宋义敏 ,姜耀东 ,马少鹏 ,杨小彬 ,赵同彬 . 岩石变形破坏全过程的变形场和能量演化研究[J]. , 2012, 33(5): 1352 -1356 .