›› 2015, Vol. 36 ›› Issue (1): 104-110.doi: 10.16285/j.rsm.2015.01.014

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of mechanical and permeability characteristics of moulded coals with different binder ratios

XU Jiang1, 2,YE Gui-bing1, 2,LI Bo-bo1, 2,CAO Jie1, 2,ZHANG Min1, 2   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing University, Chongqing 400044, China
  • Received:2013-08-15 Online:2015-01-12 Published:2018-06-13

Abstract: This paper attempts to make mechanical and permeability characteristics of cement bound coals closer to those of undisturbed coals. It uses triaxial servo-controlled seepage equipment for thermo-fluid-solid coupling of coal containing methane and selects cement as a binder. The triaxal compressive properties of cement bound coals with different binder ratios are compared with those of undisturbed coals. The characteristic values for the mechanical and permeability characteristics of the cement bound coals are evaluated quantitatively using Euclidean distance based similarity methods. The results show that: as binder ratios increase, the peak principal stress difference and the elastic modulus of the cement bound coal probably increase following a positive exponential function trend. Poisson's ratio decreases following a negative exponent function trend. As the binder ratio increases, the initial permeability and the minimum permeability of the cement bound coal have the decreasing trend of exponent function. The penetration rate of change is smaller and smaller. The permeability-axial strain curve is gentler. The mechanical and permeability characteristics of the cement bound coal with the cement binder ratio #IV are the closest to those of undisturbed coal. This type of cement bound coal can be used as the similar material for simulating the undisturbed coal.

Key words: binder, mechanical characteristics, permeability, similar material, coal

CLC Number: 

  • TD 713
[1] CHEN Ren-peng, WANG Peng-fei, LIU Peng, CHENG Wei, KANG Xin, YANG Wei, . Experimental study on soil-water characteristic curves of subgrade coal gangue filler [J]. Rock and Soil Mechanics, 2020, 41(2): 372-378.
[2] LI Hong-po, CHEN Zheng, FENG Jian-xue, MENG Yu-han, MEI Guo-xiong, . Study on position optimization of horizontal drainage sand blanket of double-layer foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 437-444.
[3] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
[4] YANG Fu-jian, HU Da-wei, TIAN Zhen-bao, ZHOU Hui, LU Jing-jing, LUO Yu-jie, GUI Shu-qiang, . Evolution and mechanism of permeability of unconsolidated sandstone under high hydrostatic pressure compaction [J]. Rock and Soil Mechanics, 2020, 41(1): 67-77.
[5] YIN Guang-zhi, LU Jun, ZHANG Dong-ming, LI Ming-hui, DENG Bo-zhi, LIU Chao, . Study on plastic zone and permeability-increasing radius of borehole surrounding rock under true triaxial stress conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 1-10.
[6] PENG Shou-jian, GUO Shi-chao, XU Jiang, GUO Chen-ye, ZHANG Chao-lin, JIA Li, . Impacts of mining-induced stress concentration on coal-bed methane drainage in boreholes parallel with bedding [J]. Rock and Soil Mechanics, 2019, 40(S1): 99-108.
[7] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
[8] CHEN Dong, WANG En-yuan, LI Nan, . Study on wave field characteristics of different media models of coal and rock [J]. Rock and Soil Mechanics, 2019, 40(S1): 449-458.
[9] PENG Shou-jian, YUE Yu-qing, LIU Yi-xin, XU Jiang, . Anisotropic characteristics and shear mechanical properties of different genetic structural planes [J]. Rock and Soil Mechanics, 2019, 40(9): 3291-3299.
[10] DING Chang-dong, ZHANG Yang, YANG Xiang-tong, HU Da-wei, ZHOU Hui, LU Jing-jing, . Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism [J]. Rock and Soil Mechanics, 2019, 40(9): 3300-3308.
[11] LIU Quan-sheng, HE Fan, DENG Peng-hai, TIAN Yong-chao . Application of 3D printing technology in physical modelling in rock mechanics [J]. Rock and Soil Mechanics, 2019, 40(9): 3397-3404.
[12] XU Jiang, WU Jun-yu, LIU Yi-xin, LIE Jiao, . Experimental study of shear-seepage coupling properties of rock mass under different filling degrees [J]. Rock and Soil Mechanics, 2019, 40(9): 3416-3424.
[13] WANG Chong, HU Da-wei, REN Jin-ming, ZHOU Hui, LU Jing-jing, LIU Chuan-xin, . Influence of erosive environment on permeability and mechanical properties of underground structures [J]. Rock and Soil Mechanics, 2019, 40(9): 3457-3464.
[14] LI Ling, LIU Jin-quan, LIU Zao-bao, LIU Tao-gen, WANG Wei, SHAO Jian-fu, . Experimental investigations on compaction properties of sand-clay mixture at high pressure [J]. Rock and Soil Mechanics, 2019, 40(9): 3502-3514.
[15] ZHANG Yu-guo, WAN Dong-yang, ZHENG Yan-lin, HAN Shuai, YANG Han-yue, DUAN Meng-meng. Analytical solution for consolidation of vertical drain under vacuum preloading considering the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2019, 40(9): 3533-3541.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Kui, GAO Bo. Study of construction schemes for metro tunnel crossing river and bridge[J]. , 2010, 31(5): 1509 -1516 .
[2] YANG Bing, YANG Jun, CHANG Zai, GAN Hou-yi, SONG Er-xiang. 3-D granular simulation for compressibility of soil-aggregate mixture[J]. , 2010, 31(5): 1645 -1650 .
[3] XIAO Shi-guo,XIAN Fei,WANG Huan-long. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] YE Hai-lin, ZHENG Ying-ren, HUANG Run-qiu, DU Xiu-li, LI An-hong4, XU Jiang-bo. Study of application of strength reduction dynamic analysis method to aseismic design of anti-slide piles for landslide[J]. , 2010, 31(S1): 317 -323 .
[5] Lü Xi-lin,HUANG Mao-song,QIAN Jian-gu. Strength of soils considering the influence of deformation bifurcation under true triaxial condition[J]. , 2011, 32(1): 21 -26 .
[6] ZHANG Zhi-pei, PENG Hui, RAO Xiao. Numerical simulation study of grouting diffusion process in soft soil foundation[J]. , 2011, 32(S1): 652 -0655 .
[7] WU Li-zhou , ZHANG Li-min , HUANG Run-qiu. Analytic solution to coupled seepage in layered unsaturated soils[J]. , 2011, 32(8): 2391 -2396 .
[8] LIU Run , WANG Xiu-yan , LIU Yue-hui , WANG Wu-gang. Thermal buckling analysis of submarine buried pipelines with isolated prop initial imperfection[J]. , 2011, 32(S2): 64 -69 .
[9] HU An-feng , CHEN Bo-lang , YING Hong-wei. Influences of constitutive models on overall stability analysis of deep excavations using strength reduction method[J]. , 2011, 32(S2): 592 -597 .
[10] LIANG Yao-zhe. Analysis of active earth pressure of rigid pile composite foundation[J]. , 2012, 33(S1): 25 -29 .