›› 2015, Vol. 36 ›› Issue (7): 2013-2020.doi: 10.16285/j.rsm.2015.07.024

• Geotechnical Engineering • Previous Articles     Next Articles

Dynamic responses of system of saturated viscoelastic soil and lining of a deep tunnel under a blasting load

YANG Xiao,ZHOU Lei,ZHANG Min   

  1. Department of Civil Engineering, Shanghai University, Shanghai 200072, China
  • Received:2014-05-12 Online:2015-07-11 Published:2018-06-13

Abstract: Assuming that soil skeleton satisfies the constitutive relation of the standard linear viscoelastic solid, the transient dynamic responses of the coupled system of saturated viscoelastic soil-elastic lining of a deep circular tunnel subjected to a blasting load are studied. First, based on the Biot model of the saturated soil and the elasticity theory of the lining, with the boundary conditions as well as the continuity conditions on the interface between the saturated viscoelastic soil and elastic lining, the analytical solutions of the displacements and stresses as well as the pore water pressure of the saturated viscoelastic soil and elastic lining in the Laplace transformed domain are derived by means of the Laplace transform and potential functions. Then, the transient dynamic responses of the coupled system in the time domain are obtained with the Crump numerical inverse Laplace transform, and the radial displacements and circumferential stresses of the soil-lining coupled system as well as the pore water pressures of the saturated soil for different soil models are analyzed numerically. It is shown that, for the soil-lining coupled system with different soil models, their dynamic behaviors are almost the same under the blasting load, whereas their vibration periods and amplitudes are obviously different. Furthermore, for the system of saturated viscoelastic soil-elastic lining, the influences of the viscosity parameters on the soil radial displacement and the pore water pressure are remarkable; while the viscosity parameters have a little influence on the circumferential stress of soil.

Key words: saturated viscoelastic soil, tunnel lining, blasting load, dynamic response, Laplace transform

CLC Number: 

  • O 327
[1] HOU Gong-yu, XIE Bing-bing, HAN Yu-chen, HU Tao, LI Zi-xiang, YANG Xing-kun, ZHOU Tian-ci, XIAO Hai-lin, . Experimental study and engineering application of coupling performance between distributed embedded optical fiber and tunnel lining [J]. Rock and Soil Mechanics, 2020, 41(2): 714-726.
[2] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[3] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[4] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[5] JIANG An-nan, ZHANG Quan, WU Hong-tao, DUAN Long-mei, JIAO Ming-wei, BAI Tao, . Stability analysis of slope affected by blasting based on improved local safety method [J]. Rock and Soil Mechanics, 2019, 40(S1): 511-518.
[6] YANG Wen-bo, ZOU Tao, TU Jiu-lin, GU Xiao-xu, LIU Yu-chen, YAN Qi-xiang, HE Chuan. Analysis of dynamic response of horseshoe cross-section tunnel under vibrating load induced by high-speed train [J]. Rock and Soil Mechanics, 2019, 40(9): 3635-3644.
[7] LU Jun-long, ZHANG Yin, . Experimental study of the seismic response of the assembled multi-ribbed wall structure-subsoil system in frequency domain [J]. Rock and Soil Mechanics, 2019, 40(6): 2163-2171.
[8] JIANG Li-Chun, LUO En-Min, SHEN Bin-Bin, . A dynamic response of blasting to stereoscopic goaf group based on the multi-degree of freedom model method [J]. Rock and Soil Mechanics, 2019, 40(6): 2407-2415.
[9] XIA Cai-chu, LIU Yu-peng, WU Fu-bao, XU Chen, DENG Yun-gang, . Viscoelasto-viscoplastic solutions for circular tunnel based on Nishihara model [J]. Rock and Soil Mechanics, 2019, 40(5): 1638-1648.
[10] SHI Li, WANG Hui-ping, SUN Hong-lei, PAN Xiao-dong, . Approximate analytical solution on vibrations of saturated ground induced by pile foundations [J]. Rock and Soil Mechanics, 2019, 40(5): 1750-1760.
[11] DING Bo-yang, SONG You-zheng. Dynamic response calculation for u-P solution in saturated soil subjected to an underground point source [J]. Rock and Soil Mechanics, 2019, 40(2): 474-480.
[12] XU Peng, JIANG Guan-lu, REN Shi-jie, TIAN Hong-cheng, WANG Zhi-meng, . Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone [J]. Rock and Soil Mechanics, 2019, 40(2): 678-683.
[13] CUI Qi, HOU Jian-guo, SONG Yi-le. Analyses of restraint of surrounding rock and structural vibration characteristics of underground powerhouse for pumped storage power station [J]. Rock and Soil Mechanics, 2019, 40(2): 809-817.
[14] XIONG Zhong-ming, ZHANG Chao, CHEN Xuan. Model test on ground motion parameters of site with fissures under seismic loading [J]. Rock and Soil Mechanics, 2019, 40(2): 421-428.
[15] YE Shuai-hua, ZHAO Zhuang-fu, ZHU Yan-peng, . Large-scale shaking table experiment of loess slope supported by frame anchors [J]. Rock and Soil Mechanics, 2019, 40(11): 4240-4248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MI Hai-zhen, GAO Chun. Experimental study of expansive behaviors of quicklime[J]. , 2010, 31(4): 1253 -1256 .
[2] HE Xian-long, ZHAO Li-zhen. Analysis of shear wave velocity based on multiple cross-correlation functions[J]. , 2010, 31(8): 2541 -2545 .
[3] SONG Fei,LIU Chao,ZHANG Jian-min,ZHENG Rui-hua. Development of centrifuge model test facility of retaining wall[J]. , 2010, 31(9): 3005 -3011 .
[4] SUN Xi-ping, ZHANG Bao-hua, ZHANG Qiang, WANG Xiao-nan. Stability analysis of gravity quay when rubble bedding was eroded by water flow[J]. , 2010, 31(10): 3184 -3190 .
[5] CHEN Jing-yu , GONG Xiao-nan, DENG Ya-hong. Research on dissipation of excess pore water pressure in one-dimensional finite strain consolidation of soft clays[J]. , 2009, 30(1): 191 -195 .
[6] ZHANG Chun-hui, ZHAO Quan-sheng. Early warning system of mining subsidence damage based on ARCGIS[J]. , 2009, 30(7): 2197 -2202 .
[7] XU Zheng-ming, XUE Qiang, ZHAO Ying. Research on time effect of modified sludge composites by triaxial tests on mechanical properties[J]. , 2011, 32(6): 1713 -1718 .
[8] CHEN Ming , HU Ying-guo , LU Wen-bo , YAN Peng , ZHOU Chuang-bing. Blasting excavation induced damage characteristics of diversion tunnel for Jinping cascade II hydropower station[J]. , 2011, 32(S2): 172 -177 .
[9] WANG Tao , LI Yang , ZHOU Yong , Lü Qing , LIU Da-wei. Research on safety specific report of phosphogypsum tailings ponds[J]. , 2011, 32(S2): 407 -412 .
[10] QIAO Chun-jiang , CHEN Wei-zhong , WANG Hui , TIAN Hong-ming , TAN Xian-jun. Study of construction method of tunnel in shallow broken rock mass[J]. , 2011, 32(S2): 455 -462 .