›› 2015, Vol. 36 ›› Issue (8): 2151-2158.doi: 10.16285/j.rsm.2015.08.004

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of tri-stage fracturing characteristic of borehole based on strain of hole-wall in hydraulic fracturing process

MA Yan-kun1, 2, LIU Ze-gong1, ZHOU Jian1, WANG Wei-de1   

  1. 1. Key Laboratory of Safety and High-Efficiency Coal Mining of Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo, Henan 454000, China
  • Received:2014-08-19 Online:2015-08-11 Published:2018-06-13

Abstract: Experiments are conducted on raw coal and reshaped coal samples at varied conditions using a self-developed hydraulic fracturing experimental equipment. The characteristic of strain of borehole wall is analyzed. The results show that the strain of borehole is obvious during the process of increasing water pressure, and the strain is difficult to be recovered while the water pressure is unloaded. There are two types of strains in the borehole, i.e. tensile strain and the compressive strain. There are two types of strain region during the hydraulic fracturing process. The compressive strain occurred in compression region is recovered sufficiently when the water pressure is unloaded. The hydraulic fracturing process is divided into three stages by strain curves, i.e. the water and gas induced micro-damage stage, the local damaged zones stage, and the unstable failure stage. At micro-damage stage, the initial damage stage is caused by the formation of gas stream channels within the borehole wall. At the next stages, the tensile and compressive regions are generated on the borehole wall. The tensile failure zone increases continually until the collapse of the borehole, while the compressive deformation zone has been recovered to some extent due to the rotational direction of the applied force. Therefore, the residual tensile strain is obvious when the borehole has fractured, but the residual compressive strain is unapparent. The study results are of interest in the field of crack initiation and energy evolution mechanism of borehole.

Key words: hydraulic fracturing, strain of hole-wall, residual strain, characteristic of tri-stage hydraulic fracture

CLC Number: 

  • TD 315
[1] LOU Ye, ZHANG Guang-qing. Experimental analysis of fracturing fluid viscosity on cyclic hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(S1): 109-118.
[2] WU Jin-wen, FENG Zi-jun, LIANG Dong, BAO Xian-kai, . Characteristics of granite failure by injecting high-temperature-vapour under uniaxial stress [J]. Rock and Soil Mechanics, 2019, 40(7): 2637-2644.
[3] ZHANG Fan, MA Geng, FENG Dan, . Hydraulic fracturing simulation test and fracture propagation analysis of large-scale coal rock under true triaxial conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1890-1897.
[4] ZHANG Wei, QU Zhan-qing, GUO Tian-kui, SUN Jiang. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress [J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008.
[5] ZHANG Bo, LI Yao, YANG Xue-ying, ZHU Piao-yang, ZHU Chun-di, LIU Zi-hao, LIU Wen-jie, LUO Zhi-heng, . Design and application of a hydraulic pressure supply device for hydraulic fracturing experiments [J]. Rock and Soil Mechanics, 2019, 40(5): 2022-2028.
[6] XU Chen-yu, BAI Bing, LIU Ming-ze, . Experimental study of the fracture characteristics of granite under CO2 injection condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1474-1482.
[7] WANG Pu, WANG Chen-hu, YANG Ru-hua, HOU Zhen-yang, WANG Hong, . Preliminary investigation on the deep rock stresses prediction method based on stress polygon and focal mechanism solution [J]. Rock and Soil Mechanics, 2019, 40(11): 4486-4496.
[8] LI Dong, LU Yi-yu, RONG Yao, ZHOU Dong-ping, GUO Chen-ye, ZHANG Shang-bin, ZHANG Cheng-ke, . Rapid uncovering seam technologies for large cross-section gas tunnel excavated through coal seams using directional hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(1): 363-369.
[9] LIANG Tian-cheng, LIU Yun-zhi, FU Hai-feng, YAN Yu-zhong, XIU Nai-ling, WANG Zhen. Experimental study of hydraulic fracturing simulation for multistage circulating pump injection [J]. , 2018, 39(S1): 355-361.
[10] LI Dong-qi, LI Zong-li, Lü Cong-cong. Analysis of fracture strength of rock mass considering fissure additional water pressure [J]. , 2018, 39(9): 3174-3180.
[11] CHENG Wan, JIANG Guo-sheng, ZHOU Zhi-dong, WEI Zi-jun, ZHANG Yu, WANG Bing-hong, ZHAO Lin, . Fracture competition of simultaneous propagation of multiple hydraulic fractures in a horizontal well [J]. Rock and Soil Mechanics, 2018, 39(12): 4448-4456.
[12] JIANG Ting-ting, ZHANG Jian-hua, HUANG Gang, . Experimental study of fracture geometry during hydraulic fracturing in coal [J]. , 2018, 39(10): 3677-3684.
[13] LI Tao, TANG Xiao-wei. Experiment on dynamic residual strain of two mucky silty clays with different clay contents [J]. , 2017, 38(6): 1609-1619.
[14] YAN Cheng-zeng. A new two-dimensional FDEM-flow method for simulating hydraulic fracturing [J]. , 2017, 38(6): 1789-1796.
[15] WANG Cheng-hu, XING Bo-rui,. A new theory and application progress of the modified hydraulic test on pre-existing fracture to determine in-situ stresses [J]. , 2017, 38(5): 1289-1297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[6] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[7] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[8] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[9] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .
[10] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .