›› 2015, Vol. 36 ›› Issue (8): 2184-2192.doi: 10.16285/j.rsm.2015.08.008

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of the effect of loading rates on mechanical properties of granite at real-time high temperature

XU Xiao-li1, 2, GAO Feng2, ZHANG Zhi-zhen2, CHEN Lin3   

  1. 1. School of Architecture and Civil Engineering, Nantong University, Nantong, Jiangsu 226019, China; 2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China; 3. School of Science, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2014-03-10 Online:2015-08-11 Published:2018-06-13

Abstract: To study the effect of temperature and loading rate on mechanical properties and failure modes of rock materials, experiments on granite were conducted under uniaxial compression at different loading rates and real-time high temperatures in the range of of 25-1 000 ℃ by the servo-controlled testing machine MTS810. The results show that: (1) Stress-strain curves of granite at real-time high temperature have the compaction, elasticity, yield and failure stages. Post-peak curves present stepped and segmented drop shape at loading rates from 0.001 to 0.01 mm/s, but present smooth and steeped continuous phenomena at loading rates from 0. 01 to 0.1mm/s. (2) The peak strength and elastic modulus are divided into four stages with increasing temperature, which is the slowly rising stage from 25 to 200 ℃, rapidly declining stage from 200 to 600 ℃, slowly rising stage from 600 to 800 ℃, and slowly declining stage from 800 to 1 000 ℃. The peak strength and elastic modulus at 1 000 ℃ decreases by 53.47% and 64.34% respectively, compared with that at 25 ℃. The peak strain presents cubic polynomial relationship with the temperature. (3) Both the peak strength and elastic modulus show a quadratic polynomial increased relationship with the logarithm of loading rates, the value of which increased by 38.82% and 37.22% respective at the loading rate of 0.1 mm/s to compare with that at 0.001 mm/s. The peak strain presents unobvious relationship with loading rates. (4) As the temperature increases under uniaxial compression state, the forms of deformation and failure of rock samples transfer from the tensile shear rupture to the cone fracture with fragmentation of liquidity; and the instability mode transfers from sudden instability to progressive failure. The fracture modes of rock sample are independent on the loading rate, but the instability patterns depends on loading rate.

Key words: granite, temperature, loading rates, mechanical properties, instability mode

CLC Number: 

  • TU 452
[1] CHEN Wei-zhong, LI Fan-fan, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study on creep characteristics of claystone under thermo-hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2020, 41(2): 379-388.
[2] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[3] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, . Study of water swelling and softening characteristics of expansive rock [J]. Rock and Soil Mechanics, 2020, 41(2): 561-570.
[4] XU Yun-shan, SUN De-an, ZENG Zhao-tian, LÜ Hai-bo, . Temperature effect on thermal conductivity of bentonites [J]. Rock and Soil Mechanics, 2020, 41(1): 39-45.
[5] WANG Qing-zhi, FANG Jian-hong, CHAO Gang. Analysis of cooling effect of block-stone expressway embankment in warm temperature permafrost region [J]. Rock and Soil Mechanics, 2020, 41(1): 305-314.
[6] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[7] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[8] LIU Wei-jun, ZHANG Jin-xun, SHAN Ren-liang, YANG Hao, LIANG Chen, . Experiments on temperature field of multi-row-pipe partial horizontal freezing body in Beijing sand-gravel stratum under seepage [J]. Rock and Soil Mechanics, 2019, 40(9): 3425-3434.
[9] LEI Jiang, CHEN Wei-zhong, LI Fan-fan, YU Hong-dan, MA Yong-shang, XIE Hua-dong, WANG Fu-gang, . Mechanical properties of surrounding rock in diversion tunnel of water diversion project from Hongyan River to Shitou River [J]. Rock and Soil Mechanics, 2019, 40(9): 3435-3446.
[10] WANG Chong, HU Da-wei, REN Jin-ming, ZHOU Hui, LU Jing-jing, LIU Chuan-xin, . Influence of erosive environment on permeability and mechanical properties of underground structures [J]. Rock and Soil Mechanics, 2019, 40(9): 3457-3464.
[11] HAN Gang, ZHOU Hui, CHEN Jian-lin, ZHANG Chuan-qing, GAO Yang, SONG Gui-hong, HONG Wang-bing, . Engineering geological properties of interlayer staggered zones at Baihetan hydropower station [J]. Rock and Soil Mechanics, 2019, 40(9): 3559-3568.
[12] FANG Jin-cheng, KONG Gang-qiang, CHEN Bin, CHE Ping, PENG Huai-feng, LÜ Zhi-xiang, . Field test on thermo-mechanical properties of pile group influenced by concrete hydration [J]. Rock and Soil Mechanics, 2019, 40(8): 2997-3003.
[13] CAI Yu, XU Lin-rong, ZHOU De-quan, DENG Chao, FENG Chen-xi, . Model test research on method of self-balance and traditional static load [J]. Rock and Soil Mechanics, 2019, 40(8): 3011-3018.
[14] YIN Li-yang, TANG Chao-sheng, XIE Yue-han, LÜ Chao, JIANG Ning-jun, SHI Bin, . Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation [J]. Rock and Soil Mechanics, 2019, 40(7): 2525-2546.
[15] WU Jin-wen, FENG Zi-jun, LIANG Dong, BAO Xian-kai, . Characteristics of granite failure by injecting high-temperature-vapour under uniaxial stress [J]. Rock and Soil Mechanics, 2019, 40(7): 2637-2644.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[8] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[9] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[10] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .