›› 2015, Vol. 36 ›› Issue (11): 3235-3242.doi: 10.16285/j.rsm.2015.11.027

• Geotechnical Engineering • Previous Articles     Next Articles

Research on analytical method of multi-slip surfaces of landslide based on softening characteristics of geomaterial

XUE Hai-bin1, DANG Fa-ning1, YIN Xiao-tao2, LEI Man3, YANG Chao1   

  1. 1. Institute of Geotechnical Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; 2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. Scegc Mechanized Construction Group Company Ltd, Xi'an, Shaanxi 710043, China
  • Received:2015-07-20 Online:2015-11-11 Published:2018-06-14
  • Supported by:

    Project supported by the Key Laboratory for Science and Technology Co-ordination & Innovation Projects of Shaanxi Province (Grant No.2014SZS15-Z01), Special Funds for Public Industry Research Projects of the Ministry of Water Resources (Grant No.201501034-04) and the National Natural Science Foundation of China (Grant No.41202226).

Abstract: Landslide often exhibits characteristics of multi-stage destruction in practical engineering. However, the most dangerous slip surface and corresponding minimum safety factor are only concerned in general computing and design, this often leaves security risk. Considering the softening characteristics of geomaterial, a theoretical framework of effective simulation and evaluation of landslide multi-stage destruction is established with FLAC3D and Matlab software platform. Taken landslide in low-rent housing area of Dangjiaba in Xunyang county as an example, the process of forming multi-slip surfaces is revealed by progressive evolution of plastic shear strain, plastic tensile strain and shear strain increment and so on. It is shown that time and space sequences are not necessarily corresponding sequence. The temporal sequences of multi-slip surfaces are first-class main slip surface, second-class main slip surface and sub-slip surface; the spatial sequence is first-class master slip surface, sub-slip surface and second-class main slip surface. The number of slip surfaces is equal to the number of tension cracks in collecting on-site. The entry location of first-class main slip surface is in excellent agreement with the tension crack in the frontal part of landslide, but the positions of second-class master slip surface and sub-slip surface have little error with the tension crack on-site. The distribution and magnitude of strength parameters in the slip surfaces gradually change with the development of slip surface from peak strength to residual strength, this is the root reason why the multi-slip surfaces of landslide can be simulated effectively. The evolution of vector sum safety factors according the temporospatial distribution of material parameters in the multi-slip surfaces is obtained. It turns out that there are three different sequences of safety factors in the process of forming the multi-slip surfaces of landslide. It illustrates the active and passive relationships among all slip surfaces in the formation process.

Key words: softening characteristics, multi-slip surfaces, progressive evolution, vector sum method, safety factor

CLC Number: 

  • TU 43
[1] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, . Study of water swelling and softening characteristics of expansive rock [J]. Rock and Soil Mechanics, 2020, 41(2): 561-570.
[2] WANG Wei, CHEN Guo-qing, ZHENG Shui-quan, ZHANG Guang-ze, WANG Dong, . Study on the vector sum method of slope considering tensile-shear progressive failure [J]. Rock and Soil Mechanics, 2019, 40(S1): 468-476.
[3] ZHANG Hai-na, CHEN Cong-xin, ZHENG Yun, SUN Chao-yi, ZHANG Ya-peng, LIU Xiu-min, . Analysis of flexural toppling failure of rock slopes subjected to the load applied on the top [J]. Rock and Soil Mechanics, 2019, 40(8): 2938-2946.
[4] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[5] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[6] YIN Xiao-tao, YAN Fei, QIN Yu-qiao, ZHOU Lei, WANG Dong-ying, . Dynamic stability evaluation on Huaping bedding bank slope of Jinshajiang River Bridge in Huali Expressway under seismic action [J]. , 2018, 39(S1): 387-394.
[7] YIN Xiao-tao, XUE Hai-bin, TANG Hua, REN Xing-wen, SONG Gang,. Dialectical unity of slope local and global stability analysis methods [J]. , 2018, 39(S1): 98-104.
[8] QIN Yu-qiao, TANG Hua, FENG Zhen-yang, YIN Xiao-tao, WANG Dong-ying, . Slope stability evaluation by clustering analysis [J]. , 2018, 39(8): 2977-2983.
[9] LI Qing-chuan, LI Shu-cai, WANG Han-peng, ZHANG Hong-jun,ZHANG Bing, ZHANG Yu-qiang,. Stability analysis and numerical experiment study of excavation face for tunnels overlaid by quicksand stratum [J]. , 2018, 39(7): 2681-2690.
[10] YAN Min-jia, XIA Yuan-you, LIU Ting-ting. Limit analysis of bedding rock slopes reinforced by prestressed anchor cables under seismic loads [J]. , 2018, 39(7): 2691-2698.
[11] WEN Shu-jie, LIANG Chao, SONG Liang-liang, LIU Gang,. Search strategy of three-dimensional critical slip surface based on minimum potential energy [J]. , 2018, 39(7): 2708-2714.
[12] XU Ming, TANG Ya-feng, LIU Xian-shan, LUO Bin, TANG Dao-yong,. Seismic dynamic response of rock slope anchored with adaptive anchor cables [J]. , 2018, 39(7): 2379-2386.
[13] ZHANG Hai-tao, LUO Xian-qi, SHEN Hui, BI Jin-feng. Vector-sum-based slip surface stress method for analysing slip mass stability [J]. , 2018, 39(5): 1691-1698.
[14] REN Song, LI Zhen-yuan, DENG Gao-ling, LIU Wei, PU Wen-ming,. Softening characteristic of gypsum rock under the action of multi-factors [J]. , 2018, 39(3): 789-796.
[15] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] LIU Yuan-ming,XIA Cai-chu. Weakening mechanism of mechanical behaviors and failure models of rock mass containing discontinuous joints under direct shear condition[J]. , 2010, 31(3): 695 -701 .
[4] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[5] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[6] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[7] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[8] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[9] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[10] CHEN Bao-guo , SUN Jin-shan , ZHANG Lei. Study of stressing state and ground treatment of reinforced concrete arch culvert[J]. , 2011, 32(5): 1500 -1506 .