›› 2015, Vol. 36 ›› Issue (S1): 253-259.doi: 10.16285/j.rsm.2015.S1.043

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on settlement of soft soil ground in Taihu

ZHANG Tao1, 2, LIU Song-yu1, 2, CAI Guo-jun1, 2   

  1. 1. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; 2. Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, Jiangsu 210096, China
  • Received:2015-03-06 Online:2015-07-11 Published:2018-06-14

Abstract: According to the time-settlement data of an expressway in Taihu Lake region and the laboratory test results, the compression characteristic of alluvial lacustrine soft soil and the variation of settlement for subgrade are analyzed. The effect of engineering geological conditions and depth of fill on settlement of subgrade are investigated. The normalized index is used to estimate the settlement of subgrade. Meanwhile, two kinds of commonly used whole process subgrade settlement prediction methods are compared. The results show that the alluvial lacustrine soft soil in Taihu Lake region is a strong structured soil. The settlement of subgrade at similar geological conditions is quite different and soil structure is one of the important factors affecting the settlement of subgrade. A simple formula for estimating settlement is obtained with the analysis of normalized index. The whole process settlement prediction methods commonly used for the final settlement prediction have certain deviation; a more accurate estimated value of settlement can be got by comprehensive analysis.

Key words: expressway, surcharge preloading, structured soils, settlement, lacustrine soft soil

CLC Number: 

  • TU 443
[1] HUANG Jian, DE Pu-rong, YAO Yang-ping, PENG Ren, QI Ji-lin, . A simplified algorithm for predicting creep settlement of high fill based on modified power law model [J]. Rock and Soil Mechanics, 2023, 44(7): 2095-2104.
[2] HE Jie, GUO Duan-wei, SONG De-xin, LIU Meng-xin, ZHANG Lei, WEN Qi-feng, . Dynamic response and characteristics of tapered rigid core composite cement-soil piles under cyclic loading [J]. Rock and Soil Mechanics, 2023, 44(5): 1353-1362.
[3] ZHANG Zhi-guo, CHEN Jie, ZHU Zheng-guo, WEI Gang, WU Zhong-teng, CHEN Zhong-kan, . Analysis of ground settlement induced by small radius curve tunnel excavation considering shield articulation effect [J]. Rock and Soil Mechanics, 2023, 44(4): 1165-1178.
[4] ZHANG Jin-xun, SONG Yong-wei, YANG Hao, ZHANG Lei, QI Yi, . Influences of load and fine soil content on frost heave and thawing settlement properties of sandy gravel [J]. Rock and Soil Mechanics, 2022, 43(S1): 213-221.
[5] ZHANG Zhi-wei, LI Zhong-chao, LIANG Rong-zhu, YU Dong-dong, LIANG Dong-rui, WANG Li-xiang, WU Wen-bing. Analysis of upheaval and settlement deformation of ground surface caused by excavation of rectangular pipe jacking in soft soil stratum [J]. Rock and Soil Mechanics, 2022, 43(S1): 419-430.
[6] DAI Tian-yi, XIAO Shi-guo, . Settlement calculation method of rigid pile composite foundation considering interaction between supported embankment and improved zone [J]. Rock and Soil Mechanics, 2022, 43(S1): 479-489.
[7] WEI Chao, ZHU Hong-hu, GAO Yu-xin, WANG Jing, ZHANG Wei, SHI Bin, . Model test study of ground collapse using distributed fiber optic sensing [J]. Rock and Soil Mechanics, 2022, 43(9): 2443-2456.
[8] AHMAD Hussein, MAHBOUBI Ahmad, NOORZAD Ali, HOSEINI MOHAMMAD Hosein. Investigation of the influence of interaction of wraparound geogrid-sand on load bearing-settlement behavior of strip footing [J]. Rock and Soil Mechanics, 2022, 43(9): 2550-2567.
[9] CHAI Yuan, NIU Yong, LÜ Hai-bo, . Experimental study on vertical bearing characteristics of a single pile in cemented calcareous sand layers [J]. Rock and Soil Mechanics, 2022, 43(8): 2203-2212.
[10] LI Peng-fei, GOU Bao-liang, ZHU Meng, GAO Xiao-jing, GUO Cai-xia, . A calculation method of the time-dependent behavior for tunneling-induced ground settlement based on virtual image technique [J]. Rock and Soil Mechanics, 2022, 43(3): 799-807.
[11] JIN Jia-xu, DING Qian-shen, LIU Lei, WEI Wei, ZHANG Xiong, ZHANG Chai, . Effect of aerobic degradation on landfill settlement and development of a constitutive model [J]. Rock and Soil Mechanics, 2022, 43(2): 416-422.
[12] HAN Yi-dong, DENG Yue-bao, CAO Guang-xing, ZHU Yao-hong, YAO Yan-ming, . Thermal consolidation model of soft soil considering cyclic varying temperature [J]. Rock and Soil Mechanics, 2022, 43(10): 2768-2776.
[13] LAN Wei, WANG Wei-dong, CHANG Lin-yue, . Field pumping test and soil layer deformation analysis of super large scale deep foundation pit engineering [J]. Rock and Soil Mechanics, 2022, 43(10): 2898-2910.
[14] ZHAO Liu-yuan, SHAN Zhi-gang, WANG Ming-yuan, . Analysis of liquefaction characteristics of horizontal site of offshore wind farm under earthquake in the South Yellow Sea [J]. Rock and Soil Mechanics, 2022, 43(1): 169-180.
[15] JIANG Shuai, ZHU Yong, LI Qing, ZHOU Hui, TU Hong-liang, YANG Fan-jie, . Dynamic prediction and influence factors analysis of ground surface settlement during tunnel excavation [J]. Rock and Soil Mechanics, 2022, 43(1): 195-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[5] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[6] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[7] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[8] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[9] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .
[10] WANG Wei-dong , LI Yong-hui , WU Jiang-bin . Pile-soil interface shear model of super long bored pile and its FEM simulation[J]. , 2012, 33(12): 3818 -3824 .