Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (5): 1353-1362.doi: 10.16285/j.rsm.2022.0870

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Dynamic response and characteristics of tapered rigid core composite cement-soil piles under cyclic loading

HE Jie1, GUO Duan-wei1, SONG De-xin2, LIU Meng-xin1, ZHANG Lei1, WEN Qi-feng1   

  1. 1. College of Civil Engineering, Hunan University of Technology, Zhuzhou, Hunan 412007, China; 2. Hunan No.2 Engineering Co., Ltd., Changsha, Hunan 410015, China
  • Received:2022-06-09 Accepted:2022-07-27 Online:2023-05-09 Published:2023-04-30
  • Supported by:
    This work was supported by the Natural Science Foundation of Hunan Province (2020JJ6007).

Abstract: Tapered rigid core composite cement-soil pile is an emerging type of composite pile. In order to investigate its bearing behavior in engineering applications such as highways and railways under long-term cyclic loading, model tests were conducted on four composite piles with different pile core wedge angles, static loading ratios and cyclic loading ratios. The ultimate bearing capacity under static loading as well as the cumulative settlement, pile axial force distribution, tip resistance and side friction resistance were evaluated. The results indicated that the bearing capacity of tapered inner core composite piles under static loading was better than that of constant cross-section inner core composite piles. The cumulative settlement of composite piles increased with the increase of static loading ratio and cyclic loading ratio, and can be classified into three types of stability, development and failure under different combinations of dynamic and static loading. At the same time, the value range of load satisfying each type was also given. The interaction between the core pile and the cement-soil outer pile was not noticeably diminished, and the composite pile with a tapered core pile could fully mobilize the side friction resistance of the upper soil around the pile sides and effectively reduce the stress concentration at the tip of the core pile. Therefore, its ability to resist cyclic loading was better than that of the composite pile with a constant cross-section core pile.

Key words: tapered rigid core composite cement-soil pile, cyclic loading, ultimate bearing capacity, cumulative settlement, pile stress

CLC Number: 

  • TU 473
[1] ZHAO Guang-ming, LIU Zhi-xi, MENG Xiang-rui, ZHANG Ruo-fei, GU Qing-heng, QI Min-jie, . Energy evolution of sandstone under true triaxial cyclic principal stress [J]. Rock and Soil Mechanics, 2023, 44(7): 1875-1890.
[2] SHI Lei, ZHANG Xi-wei, . Development and application of an ultra-deep drilling core geological environment true triaxial apparatus [J]. Rock and Soil Mechanics, 2023, 44(7): 2161-2169.
[3] WANG Yuan-zhan, GONG Xiao-long, WANG Xuan, CHEN Yan-ping, XIE Tao, . Study on cyclic cumulative pore pressure and strength evolution of soda residue soil under anisotropic consolidation [J]. Rock and Soil Mechanics, 2023, 44(2): 373-380.
[4] JIANG De-yi, YANG Zhen-yu, FAN Jin-yang, LI Zong-ze, SUO Jin-jie, CHEN Jie. Experimental study of load rate effect of salt rock during loading and unloading [J]. Rock and Soil Mechanics, 2023, 44(2): 403-414.
[5] HUANG Wei, JIAN Wen-bin, YANG Jian, DOU Hong-qiang, LUO Jin-mei, . Prototype test and load transfer characteristic analysis of multi-disk anchor rod [J]. Rock and Soil Mechanics, 2023, 44(2): 520-530.
[6] ZHUANG Xin-shan, ZHOU Rong, ZHOU Mu-kai, TAO Gao-liang, JIN He-yi. Influence of pore solution on cumulative deformation and damping ratio of expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(S2): 1-10.
[7] ZHONG Zi-lan, HAN Chun-tang, LI Jin-qiang, ZHAO Xin, MIAO Hui-quan. Ultimate bearing capacity of sand under lateral horizontal movement of shallowly buried pipelines [J]. Rock and Soil Mechanics, 2022, 43(S2): 95-103.
[8] LIU Han-xiang, BIE Peng-fei, LI Xin, WEI Ying-song, WANG Ming-xuan, . Mechanical properties and energy dissipation characteristics of phyllite under triaxial multi-stage cyclic loading and unloading conditions [J]. Rock and Soil Mechanics, 2022, 43(S2): 265-274.
[9] LI Shui-jiang, TONG Yan-guang, WANG Jun, YING Meng-jie, LIU Fei-yu, . Cyclic shear properties of gravel-geogrid interface under bidirectional cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(S2): 291-298.
[10] WANG Lei, ZHANG Li-ting, SHEN Si-dong, XU Yong-fu, XIA Xiao-he, . Axisymmetric consolidation characteristics for unsaturated soils under piece-wise cyclic load [J]. Rock and Soil Mechanics, 2022, 43(S1): 203-212.
[11] MENG Fan-li, LOU Zhen-zhen, GE Wei, . Experimental study on dynamic characters of unloading silt under long-term cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(S1): 383-388.
[12] XU Long-fei, WENG Xiao-lin, WONG Henry, FABBRI Antonin, ZHU Tan-tan . Development and application of a temperature-humidity controlled triaxial apparatus for earth materials [J]. Rock and Soil Mechanics, 2022, 43(8): 2327-2336.
[13] YANG Ke, ZHANG Zhai-nan, CHI Xiao-lou, LÜ Xin, WEI Zhen, LIU Wen-jie, . Experimental study on crack evolution and damage characteristics of water bearing sandstone under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(7): 1791-1802.
[14] ZHANG Qiang, WANG Jun-bao, SONG Zhan-ping, FENG Shi-jin, ZHANG Yu-wei, ZENG Tao, . Microstructure variation and empirical fatigue model of salt rock under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(4): 995-1008.
[15] ZHANG Chuang, REN Song, WU Fei, LIU Jie, ZHOU Xu-hui, . Experimental study on the permeability characteristics of laminated shale under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(3): 649-658.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Chun-yan, ZHOU Shun-hua, YUAN Jian-yi. Calculation and analysis of settlement time-dependency of soil compaction pile based on one-dimensional and three-dimensional consolidations[J]. , 2009, 30(9): 2629 -2632 .
[2] YANG Tao,ZHOU De-pei,MA Hui-min,ZHANG Zhong-ping. Point safety factor method for stability analysis of landslide[J]. , 2010, 31(3): 971 -975 .
[3] LI Wen-pei, WANG Ming-yang, FAN Peng-xian. Research on bearing capacity of tunnel surrounding rock based on discontinuous displacement field[J]. , 2010, 31(8): 2441 -2447 .
[4] ZHANG Ju-lian, SHEN Ming-rong. Sand liquefaction prediction based on stepwise discriminant analysis[J]. , 2010, 31(S1): 298 -302 .
[5] PENG Ming-xiang. Coulumb's unified solution of active earth pressure on retaining wall[J]. , 2009, 30(2): 379 -386 .
[6] YANG Ye, LIU Song-yu, DENG Yong-feng. Effect of reinforced subgrade on differential settlement by model test research[J]. , 2009, 30(3): 703 -706 .
[7] ZHENG Gang, YAN Zhi-xiong, LEI Hua-yang, WANG Sheng-tang. Experimental studies of unloading mechanical properties of silty clay of first marine layer in Tianjin city[J]. , 2009, 30(5): 1201 -1208 .
[8] DAI Hong-jun, LIU Xin-liang, REN Zhi-jun, WEI Hua. Prototype testing study of pile-net composite foundation of circular coal yard[J]. , 2011, 32(2): 487 -494 .
[9] JIANG Qing-hui , DENG Shu-shen , ZHOU Chuang-bing. Three-dimensional numerical manifold method for seepage problems with free surfaces[J]. , 2011, 32(3): 879 -884 .
[10] XU Chao , CHEN Zhong-qing , YE Guan-bao , XIAO Yuan-yuan , DING Tian-rui. Experimental research on ground improvement of silt using impact roller compaction[J]. , 2011, 32(S2): 389 -392 .