›› 2016, Vol. 37 ›› Issue (2): 331-342.doi: 10.16285/j.rsm.2016.02.004

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Shaking table test on seismic response of subway station structure in soft ground

CHEN Guo-xing1, 2, CHEN Su3, ZUO Xi1, 2, QI Cheng-zhi4, DU Xiu-li5, WANG Zhi-hua1, 2   

  1. 1. Institute of Geotechnical Engineering, Nanjing University of Technology, Nanjing, Jiangsu 210009, China; 2. Civil Engineering & Earthquake Disaster Prevention Center of Jiangsu Province, Nanjing, Jiangsu 210009, China; 3.Institute of Geophysics, China earthquake administration, Beijing 100081, China; 4. School of Civil and Transportation Engineering,Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 5. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100022, China
  • Received:2014-09-18 Online:2016-02-11 Published:2018-06-09
  • Supported by:

    This work was supported by the Major Research Plan Program of National Natural Science Foundation of China (91215301), and the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20130512).

Abstract: As one of the series large-scale shaking table tests on the failure mechanism of subway station structure, a large-scale shaking table test on frame type subway station structure model in soft silt clay under near- and far-field strong ground motions is conducted, in which the acceleration, pore pressure and earthquake-induced settlement of the model ground as well as the acceleration, strain and horizontal displacement of the model structure are measured and analyzed. The results show that as the seismic wave propagates in the model ground, the amplitude of the low frequency components increases while the amplitude of the high frequency components decreases from the bottom to the top of the ground. Under strong ground motions, the fundamental frequency of the model ground significantly decreases, and the ground exhibits a remarkable amplification effect for low frequency components and wave filtering effect for high frequency components. The pore pressure ratio of the model ground slightly increases. The development processes of pore pressure ratios under different ground motions are greatly different, and show an obvious spatial effect. Under near- and far-field strong ground motions, the acceleration responses of the model structure are obviously different. The model structure has a significant spatial effect on the acceleration response of the ground motion for the soft ground. The frame structure does not show an obvious floating phenomenon and its relative deformation is small. The frequency characteristics of the ground motion have an obvious influence on the deformation mode and magnitude of the side wall for the model structure. The most severely seismic damage part is located at the middle column of the model structure. The whole model structure is slightly seismic damaged and in nondestructive state.

Key words: shaking table model test, soft ground, subway station structure, seismic damage behavior, spatial effect

CLC Number: 

  • U 231

[1] YAO Hong-bo, LI Bing-he, TONG Lei, LIU Xing-wang, CHEN Wei-lin. Analysis of metro tunnel deformation by upper excavation unloading considering spatial effect in soft soil [J]. Rock and Soil Mechanics, 2020, 41(7): 2453-2460.
[2] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[3] LIU Nian-wu, CHEN Yi-tian, GONG Xiao-nan, YU Ji-tao, . Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil [J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525.
[4] ZHANG Chun-sheng, LAI Dao-ping, WU Guan-ye, XU Jian-rong, ZHANG Bo-yan, . Failure mode and characteristics study of complex slope blocks under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(12): 4620-4626.
[5] LEI Da, JIANG Guan-lu, SUN Sheng-jie, QI Zhi-hui, LI An-hong, . Study of bridge foundation on slope reinforced by anti-slide piles on shaking table [J]. Rock and Soil Mechanics, 2019, 40(1): 127-134.
[6] WANG Yi-min, YAN Cen, YU Heng, LI Qi. Experimental study of soil stress characteristics of geogrid-reinforced widened embankment under static loadings [J]. , 2018, 39(S1): 311-317.
[7] WU Gang, SUN Hong-yue, FU Cui-wei, CHEN Yong-zhen, TANG Bi-hui,. A mathematical model and its solution for unsteady flow under siphon drainage by fully penetrating well in soft ground [J]. , 2018, 39(9): 3355-3361.
[8] SUN Zhi-liang, KONG Ling-wei, GUO Ai-guo. Large-scale shaking table tests on seismic behavior of deposit slopes with varying moisture content [J]. , 2018, 39(7): 2433-2441.
[9] ZENG Chao-feng, XUE Xiu-li, ZHENG Gang,. A parametric study of lateral displacement of support wall induced by foundation pre-dewatering in soft ground [J]. , 2017, 38(11): 3295-3303.
[10] ZENG Chao-feng, XUE Xiu-li, ZHENG Gang,. Effect of soil permeability on wall deflection during pre-excavation dewatering in soft ground [J]. , 2017, 38(10): 3039-3047.
[11] ZHU Yao-hong, XIA Han-yong, HU Zhi-fei,. An uplifting practice of shield tunnel in soft ground [J]. , 2016, 37(S2): 543-551.
[12] GUAN Zhen-chang, GONG Zhen-feng, LUO Zhi-bin, CHEN Ren-chun, HE Chuan,. Seismic property of a large section tunnel based on shaking table model tests [J]. , 2016, 37(9): 2553-2560.
[13] ZHANG Chang-guang, ZENG Kai-hua, . Comparisons of spatial-effect approaches for tunnel excavation using convergence-confinement method [J]. , 2016, 37(5): 1417-1424.
[14] HUANG Guang-jun. Problems and their solutions in predicting soft ground settlement based on Asaoka’s method [J]. , 2016, 37(4): 1061-1065.
[15] LIU Chun-yuan, ZHU Nan, ZHAO Xian-hui, WANG Wen-jing. Centrifugal test study of vacuum combined with surcharge preloading of lacustrine soft soil [J]. , 2015, 36(S1): 310-314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!