›› 2018, Vol. 39 ›› Issue (9): 3355-3361.doi: 10.16285/j.rsm.2016.3005

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A mathematical model and its solution for unsteady flow under siphon drainage by fully penetrating well in soft ground

WU Gang1, SUN Hong-yue1, FU Cui-wei2, CHEN Yong-zhen1, TANG Bi-hui1   

  1. 1. Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China; 2. Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
  • Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the National Natural Science Foundation of China(41272336).

Abstract: The treatment of soft ground deposit is problem in geotechnical engineering. Most treatments drain the water out of the soft soil deposit. Siphon method is simple and free of power, and can be used to dewater the groundwater. To better understand the mechanism of siphon drainage process in soft ground improvement, the analytical analysis are carried out to investigate the ground water level in soft ground and siphon discharge according to the ground water movement theory. An explicit analytical solution of axisymmetric well-flow differential equations in unconfined aquifer is derived to assess the water level and discharge in soft ground based on Theis theory and Boltzmann transformation. The analytical solution is verified by numerical simulation. The results show that the analytical solution agree well with data obtained from experiment. Relative error is 0-15% by comparing analytical solution and classical solution, and it is more simple than classical solution. It is more convenient than classical solution for engineering application.

Key words: siphon, soft ground, unconfined aquifer, well flow, analytical solution

CLC Number: 

  • TU 470

[1] JIANG Liu-hui, LI Chuan-xun, YANG Yi-qing, ZHANG Rui. Approximate analytical solutions for one-dimensional nonlinear consolidation of double-layered soil under time-dependent loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1583-1590.
[2] ZHU Yan-peng, YAN Zi-hao, ZHU Yi-fan. Stability calculation of micro steel tube mortar composite pile in soil [J]. Rock and Soil Mechanics, 2020, 41(4): 1339-1346.
[3] LIU Guo-zhao, QIAO Ya-fei, HE Man-chao, FAN Yong, . An analytical solution of longitudinal response of tunnels under dislocation of active fault [J]. Rock and Soil Mechanics, 2020, 41(3): 923-932.
[4] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[5] MENG Yu-han, ZHANG Bi-sheng, CHEN Zheng, MEI Guo-xiong, . Consolidation analysis of foundation with sand blankets under ramp loading [J]. Rock and Soil Mechanics, 2020, 41(2): 461-468.
[6] ZHANG Yu-guo, WAN Dong-yang, ZHENG Yan-lin, HAN Shuai, YANG Han-yue, DUAN Meng-meng. Analytical solution for consolidation of vertical drain under vacuum preloading considering the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2019, 40(9): 3533-3541.
[7] XIA Cai-chu, LIU Yu-peng, WU Fu-bao, XU Chen, DENG Yun-gang, . Viscoelasto-viscoplastic solutions for circular tunnel based on Nishihara model [J]. Rock and Soil Mechanics, 2019, 40(5): 1638-1648.
[8] XIN Ya-wen, ZHOU Zhi-fang, MA Jun, LI Ming-wei, CHEN Meng, WANG Shan, HU Zun-yue, . A method for determining aquitard hydraulic parameters based on double-tube field test [J]. Rock and Soil Mechanics, 2019, 40(4): 1535-1542.
[9] MENG Yu-han, CHEN Zheng, FENG Jian-xue, LI Hong-po, MEI Guo-xiong, . Optimization of one-dimensional foundation with sand blankets under the non-uniform distribution of initial excess pore water pressure [J]. Rock and Soil Mechanics, 2019, 40(12): 4793-4800.
[10] HUANG Chao-xuan. Research on nonlinear consolidation calculation of foundation treated with prefabricated vertical drains [J]. Rock and Soil Mechanics, 2019, 40(12): 4819-4827.
[11] WANG Yi-min, YAN Cen, YU Heng, LI Qi. Experimental study of soil stress characteristics of geogrid-reinforced widened embankment under static loadings [J]. , 2018, 39(S1): 311-317.
[12] XIA Chang-qing, HU An-feng, CUI Jun, Lü Wen-xiao, XIE Kang-he, . Analytical solutions for one-dimensional nonlinear consolidation of saturated soft layered soils [J]. , 2018, 39(8): 2858-2864.
[13] ZHANG Bing-qiang, WANG Qi-yun, LU Xiao-ying, . Analytical solution for non-Darcian seepage field of a shallow circular tunnel in soft soil [J]. Rock and Soil Mechanics, 2018, 39(12): 4377-4384.
[14] WANG Lei, LI Lin-zhong, XU Yong-fu, XIA Xiao-he, SUN De-an,. Analysis of one-dimensional consolidation of fractional viscoelastic saturated soils with semi-permeable boundary [J]. , 2018, 39(11): 4142-4148.
[15] HU Zhi-feng, CHEN Jian, QIU Yue-feng, LI Jian-bin, ZHOU Xing-tao, . Analytical formula for ground settlement induced by horizontal movement of retaining wall [J]. , 2018, 39(11): 4165-4175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!