›› 2016, Vol. 37 ›› Issue (8): 2145-2150.doi: 10.16285/j.rsm.2016.08.003

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Relationship between volumetric water content and effective dielectric permittivity of Nanning expansive soil

LÜ Hai-bo1, 2, JIANG Wen-yu1, ZHAO Yan-lin1, 2, ZENG Zhao-tian1, 2   

  1. 1. College of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi 530004, China; 2. Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
  • Received:2014-09-09 Online:2016-08-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (NSFC) (51169005 and 41272358), the Innovation Research Team Fund for Natural Science of Guangxi(2012GXNSFGA060001).

Abstract: The relationship between volumetric water content of soils and their effective dielectric permittivity is the theoretical basis of time domain reflectometry (TDR) technique. In this study, effective dielectric permittivity of a reconstituted expansive soil sampled from Nanning is measured by time domain reflectometry at different volumetric water contents, and three approaches including empirical equation method, theoretical bound method and theoretical model, are used to simulate the variation of the effective dielectric permittivity. The measured values of dielectric permittivity are found to be located within bounds of the Hashin-Shtrikman and Wiener, but the range of the solutions from the Hashin-Shtrikman bound is narrower than the Wiener bound’s. The effective dielectric permittivity of Nanning expansive soil is overestimated by Topp’s empirical equation, since the bound water in the expansive soil leads to a lower effective dielectric permittivity. The effect of bound water can be considered in Looyenga empirical equation in which three phases are separated and better agreements between predictions and tested results are obtained. Theoretical models have advantage in conceptualizing the effects of internal structure, but for the Maxwell-Garnett model and differential effective medium model, the predicting results of taking liquid phase or gaseous phase as a continuous phase are not satisfactory, since the three- phase configuration is greatly changed during water content increasing. The performance of these two theoretical models can be improved if the saturation are introduced as dependent weight functions to incorporate the calculated results of liquid phase and gaseous phase.

Key words: expansive soil, effective dielectric permittivity, bound water, three-phase configuration

CLC Number: 

  • TU 46+2

[1] GAO Zhi-ao, KONG Ling-wei, WANG Shuang-jiao, LIU Bing-heng, LU Jian-feng, . Deformation behavior and shear zone evolution characteristics of undisturbed expansive soil with different fissure directions under plane strain condition [J]. Rock and Soil Mechanics, 2023, 44(9): 2495-2508.
[2] ZOU Wei-lie, FAN Ke-wei, ZHANG Pan, HAN Zhong, . Analysis of lateral pressures on expansive soil retaining wall with expanded polystyrene geofoam inclusions and influence factors [J]. Rock and Soil Mechanics, 2023, 44(9): 2537-2544.
[3] ZENG Zhao-tian, CUI Zhe-qi, SUN De-an, YAO Zhi, PAN Bin, . Temperature effect on water retention capacity of Nanning expansive soil and its microscopic mechanism [J]. Rock and Soil Mechanics, 2023, 44(8): 2177-2185.
[4] ZHANG Ling-kai, CUI Zi-yan, . Compression and permeability characteristics of expansive soil under drying-wetting-freezing-thawing cycles [J]. Rock and Soil Mechanics, 2023, 44(3): 728-740.
[5] GAO Hao-dong, AN Ran, KONG Ling-wei, ZHANG Xian-wei, LEI Xue-wen, . Evolution characteristics of meso-cracks in expansive soil under desiccating conditions [J]. Rock and Soil Mechanics, 2023, 44(2): 442-450.
[6] LI Li-hua, HUANG Chang, LI Wen-tao, LI Zi-jian, YE Zhi, . Study on mechanical and microscopic characterization of expansive soil solidified by rice husk ash-granulated blast furnace slag [J]. Rock and Soil Mechanics, 2023, 44(10): 2821-2832.
[7] ZHANG Yi, LI Yong-qiang, ZHANG Ding-wen, HOU Jue, FAN Xiao-jun, TANG Zi-qiong. Road performance and field test of expansive soil improved by silt [J]. Rock and Soil Mechanics, 2023, 44(10): 2942-2952.
[8] ZHUANG Xin-shan, ZHOU Rong, ZHOU Mu-kai, TAO Gao-liang, JIN He-yi. Influence of pore solution on cumulative deformation and damping ratio of expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(S2): 1-10.
[9] LIU Si-hong, SHEN Chao-min, CHENG De-hu, ZHANG Cheng-bin, MAO Hang-yu, . Model test of expansive soil slope with soilbags during rainfall-insolation cycles [J]. Rock and Soil Mechanics, 2022, 43(S2): 35-42.
[10] YU Cheng-cheng, LU Zheng, YAO Hai-lin, LIU Jie, ZHAN Yong-xiang, . Experimental study of modifying expansive soils using microbial induced calcite precipitation [J]. Rock and Soil Mechanics, 2022, 43(S1): 157-163.
[11] LIU Guan-shi, ZHAO Shou-dao, MOU Zhi, MO Yan-kun, ZHAO Qing-song, . Experimental study of the influence of structure on the shrinkage characteristics of expansive soil [J]. Rock and Soil Mechanics, 2022, 43(7): 1772-1780.
[12] LI Xin-ming, JIA Ya-lei, WANG Zhi-liu, YIN Song. Strain rate effect of the shear mechanical properties of undisturbed expansive soil [J]. Rock and Soil Mechanics, 2022, 43(12): 3327-3334.
[13] ZHUANG Xin-shan, ZHOU Mu-kai, TAO Gao-liang, ZHOU Rong, PENG Cheng-hong, LIN Wan-feng. Experimental study of dynamic elastic modulus and damping ratio of improved expansive soil under cyclic loading by expanded polystyrene [J]. Rock and Soil Mechanics, 2021, 42(9): 2427-2436.
[14] SHANG Yong-hui, XU Lin-rong, CAI Yu, . Study on dynamic characteristics of cement-stabilized expansive soil subgrade of heavy-haul railway under immersed environment [J]. Rock and Soil Mechanics, 2020, 41(8): 2739-2745.
[15] LUO Zhao-gang, WANG Shi-ji, YANG Zhen-bei, . Quantitative analysis of fracture evolution of expansive soils under wetting-drying cycles [J]. Rock and Soil Mechanics, 2020, 41(7): 2313-2323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[5] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[6] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[7] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[8] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[9] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .
[10] WANG Wei-dong , LI Yong-hui , WU Jiang-bin . Pile-soil interface shear model of super long bored pile and its FEM simulation[J]. , 2012, 33(12): 3818 -3824 .