›› 2016, Vol. 37 ›› Issue (9): 2696-2705.doi: 10.16285/j.rsm.2016.09.035

• Numerical Analysis • Previous Articles     Next Articles

SPH landslide model based on GIS spatial data

XU bo1, XIE Mo-wen1, HU Man2   

  1. 1. School of Resources and Civil Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. College of Engineering and Technology, Southwest University, Chongqing 400715, China
  • Received:2015-12-23 Online:2016-09-12 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (41372370).

Abstract: The existing smoothed particle hydrodynamics (SPH) method is normally difficult to establish the particle model in the simulation of landslide. This paper aims at developing a new particle arrangement and insertion method based on geographic information system (GIS). Firstly, the SPH particle model is established and its corresponding particle generation is programmed. Secondly, the Bingham fluid model combined with the Mohr-Coulomb failure criterion is used to achieve the three-dimensional movement process of the damaged slope. Finally, the SPH model is verified by simulating Tangjiashan landslide and is further applied to predict the influence of the Jinpingzi landslide. The results indicate that the established landslide SPH model based on spatial GIS data is feasible and applicable. Therefore, the simulation study of landslide disasters can not only enhance greatly the analysis of geological disasters, but also provide reference for the forecast and control of landslide hazard.

Key words: smoothed particle hydrodynamics (SPH), geographic information system (GIS), spatial data, landslide, particle model, movement process

CLC Number: 

  • TU 457

[1] DU Wen-jie, SHENG Qian, FU Xiao-dong, TANG Hua, CHEN He, DU Yu-xiang, ZHOU Yong-qiang. Dynamic stability analysis and failure mechanism of Yanyang village landslide under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2461-2469.
[2] CAI Gai-pin, XUAN Lü-wei, ZHANG Xue-tao, GUO Jin. Investigation into the crushing process in multi-scale cohesive particle model [J]. Rock and Soil Mechanics, 2020, 41(6): 1809-1817.
[3] JIAN Wen-bin, HUANG Cong-hui, LUO Yang-hua, NIE Wen. Experimental study on wetting front migration induced by rainfall infiltration in unsaturated eluvial and residual soil [J]. Rock and Soil Mechanics, 2020, 41(4): 1123-1133.
[4] HAN Dong-dong, MEN Yu-ming, HU Zhao-jiang. Experimental study of anti-sliding mechanism and force of lattice anchor in soil landslide [J]. Rock and Soil Mechanics, 2020, 41(4): 1189-1194.
[5] HUANG Xiao-hu, YI Wu, HUANG Hai-feng, DENG Yong-huang. Study and application of the relationship between preferential flow penetration and slope deformation [J]. Rock and Soil Mechanics, 2020, 41(4): 1396-1403.
[6] TANG Ming-gao, LI Song-lin, XU Qiang, GONG Zheng-feng, ZHU Quan, WEI Yong. Study of deformation characteristics of reservoir landslide based on centrifugal model test [J]. Rock and Soil Mechanics, 2020, 41(3): 755-764.
[7] CHEN He, ZHANG Yu-fang, ZHANG Xin-min, WEI Shao-wei, . Full-scale model experiments on anti-sliding characteristics of high-pressure grouting steel-tube micropiles [J]. Rock and Soil Mechanics, 2020, 41(2): 428-436.
[8] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[9] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[10] HUANG Xiao-hu, LEI De-xin, XIA Jun-bao, YI Wu, ZHANG Peng, . Forecast analysis and application of stepwise deformation of landslide induced by rainfall [J]. Rock and Soil Mechanics, 2019, 40(9): 3585-3592.
[11] DENG Mao-lin, YI Qing-lin, HAN Bei, ZHOU Jian, LI Zhuo-jun, ZHANG Fu-ling, . Analysis of surface deformation law of Muyubao landslide in Three Gorges reservoir area [J]. Rock and Soil Mechanics, 2019, 40(8): 3145-3152.
[12] YUGuo, XIE Mo-wen, HU Qing-zhong, JIN Yu-peng, . A method for calculating the three-dimensional landslide speed of reservoir bank based on GIS [J]. Rock and Soil Mechanics, 2019, 40(7): 2781-2788.
[13] HAN Tong-chun, LIN Bo-wen, HE Lu, SU Yu-qin, . Three-dimensional slope modelling method and its stability based on coupled GIS and numerical simulation software [J]. Rock and Soil Mechanics, 2019, 40(7): 2855-2865.
[14] ZHAO Jiu-bin, LIU Yuan-xue, LIU Na, HU Ming, . Spatial prediction method of regional landslide based on distributed bp neural network algorithm under massive monitoring data [J]. Rock and Soil Mechanics, 2019, 40(7): 2866-2872.
[15] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!