›› 2016, Vol. 37 ›› Issue (10): 2795-2802.doi: 10.16285/j.rsm.2016.10.008

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Swelling model study of expansive soil at K0 and triaxial stress state

LIU Qing-bing1, 2, WU Yun-gang3, XIANG Wei2, WANG Ren1   

  1. 1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. Three Gorges Research Center for Geo-hazard of Ministry of Education, China University of Geosciences, Wuhan, Hubei 430074, China; 3. Wuhan Geotechnical Engineering and Surveying Co., Ltd., Wuhan, Hubei 430022, China
  • Received:2015-02-16 Online:2016-10-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China(41572286, 41202199), the National Natural Science Foundation of Hubei Province(2015CFB247) and the China Postdoctoral Science Foundation(2013M542098).

Abstract: A series of swelling tests is performed on a typical Nanyang expansive soil with medium swelling capacity compacted at various initial densities and water contents. The swelling tests are separately conducted using the conventional oedometer to confine the lateral swelling of the soil specimens, and using the GDS triaxial apparatus to allow the free volumetric swelling. The multiple nonlinear mathematical method is adopted to obtain the lateral swelling model (i.e. K0 model ), which fully considers the coupled effect of initial degree of compaction, moisture content and overburden pressure on the swelling strain. Also, an empirical model for the relationship between spherical stress and volumetric strain is proposed by triaxial swelling test. Based on the K0 swelling model, a formula is proposed to quantitatively evaluate the swell potential, and also a theoretical calculation method is derived to determine the processing layer thickness of expansive soil slope. Based on the assumption that volumetric swelling strain only changes with spherical stress and is not affected by the deviatoric stress, the correlations between the K0 model and triaxial model are analyzed, and a method to calculate the volumetric swelling strain by only employing the K0 model is given. Experimental results show that the proposed K0 model with multifactor coupling is reasonable to predict the swelling potential of compacted expansive soil. It is found that the key factor to link the K0 model and triaxial swelling model is assuming an average static lateral pressure coefficient. The average static lateral pressure coefficient tends to decreases with increasing overburden pressure by inversion method. This tendency of average static lateral pressure coefficient is believed to rely on the fact that lateral swelling pressure decreases with the increase of overburden pressure.

Key words: expansive soil, triaxial swelling test, lateral pressure coefficient, correlation analysis

CLC Number: 

  • TU 443

[1] GAO Zhi-ao, KONG Ling-wei, WANG Shuang-jiao, LIU Bing-heng, LU Jian-feng, . Deformation behavior and shear zone evolution characteristics of undisturbed expansive soil with different fissure directions under plane strain condition [J]. Rock and Soil Mechanics, 2023, 44(9): 2495-2508.
[2] ZOU Wei-lie, FAN Ke-wei, ZHANG Pan, HAN Zhong, . Analysis of lateral pressures on expansive soil retaining wall with expanded polystyrene geofoam inclusions and influence factors [J]. Rock and Soil Mechanics, 2023, 44(9): 2537-2544.
[3] ZENG Zhao-tian, CUI Zhe-qi, SUN De-an, YAO Zhi, PAN Bin, . Temperature effect on water retention capacity of Nanning expansive soil and its microscopic mechanism [J]. Rock and Soil Mechanics, 2023, 44(8): 2177-2185.
[4] ZHANG Ling-kai, CUI Zi-yan, . Compression and permeability characteristics of expansive soil under drying-wetting-freezing-thawing cycles [J]. Rock and Soil Mechanics, 2023, 44(3): 728-740.
[5] GAO Hao-dong, AN Ran, KONG Ling-wei, ZHANG Xian-wei, LEI Xue-wen, . Evolution characteristics of meso-cracks in expansive soil under desiccating conditions [J]. Rock and Soil Mechanics, 2023, 44(2): 442-450.
[6] LI Li-hua, HUANG Chang, LI Wen-tao, LI Zi-jian, YE Zhi, . Study on mechanical and microscopic characterization of expansive soil solidified by rice husk ash-granulated blast furnace slag [J]. Rock and Soil Mechanics, 2023, 44(10): 2821-2832.
[7] ZHANG Yi, LI Yong-qiang, ZHANG Ding-wen, HOU Jue, FAN Xiao-jun, TANG Zi-qiong. Road performance and field test of expansive soil improved by silt [J]. Rock and Soil Mechanics, 2023, 44(10): 2942-2952.
[8] ZHUANG Xin-shan, ZHOU Rong, ZHOU Mu-kai, TAO Gao-liang, JIN He-yi. Influence of pore solution on cumulative deformation and damping ratio of expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(S2): 1-10.
[9] LIU Si-hong, SHEN Chao-min, CHENG De-hu, ZHANG Cheng-bin, MAO Hang-yu, . Model test of expansive soil slope with soilbags during rainfall-insolation cycles [J]. Rock and Soil Mechanics, 2022, 43(S2): 35-42.
[10] YU Cheng-cheng, LU Zheng, YAO Hai-lin, LIU Jie, ZHAN Yong-xiang, . Experimental study of modifying expansive soils using microbial induced calcite precipitation [J]. Rock and Soil Mechanics, 2022, 43(S1): 157-163.
[11] LIU Guan-shi, ZHAO Shou-dao, MOU Zhi, MO Yan-kun, ZHAO Qing-song, . Experimental study of the influence of structure on the shrinkage characteristics of expansive soil [J]. Rock and Soil Mechanics, 2022, 43(7): 1772-1780.
[12] LI Yan, CHENG Yu-han, ZHAI Yue, WEI Sheng-yu, YANG Yu-bing, ZHAO Rui-feng, LIANG Wen-biao. Micro-structure characteristics and dynamic mechanical properties of granite after high temperature [J]. Rock and Soil Mechanics, 2022, 43(12): 3316-3326.
[13] LI Xin-ming, JIA Ya-lei, WANG Zhi-liu, YIN Song. Strain rate effect of the shear mechanical properties of undisturbed expansive soil [J]. Rock and Soil Mechanics, 2022, 43(12): 3327-3334.
[14] ZHUANG Xin-shan, ZHOU Mu-kai, TAO Gao-liang, ZHOU Rong, PENG Cheng-hong, LIN Wan-feng. Experimental study of dynamic elastic modulus and damping ratio of improved expansive soil under cyclic loading by expanded polystyrene [J]. Rock and Soil Mechanics, 2021, 42(9): 2427-2436.
[15] SHANG Yong-hui, XU Lin-rong, CAI Yu, . Study on dynamic characteristics of cement-stabilized expansive soil subgrade of heavy-haul railway under immersed environment [J]. Rock and Soil Mechanics, 2020, 41(8): 2739-2745.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Dou-dou, CHEN Wei-zhong, YANG Jian-ping, TAN Xian-jun, ZHOU X. Experimental research on strength characteristic of brittle rock unloading confining pressure[J]. , 2009, 30(9): 2588 -2594 .
[2] WANG Gui-yao,LI Bin,LUO Jun,FU Hong-yuan. Study of soil-water charactiristics and matric suction measurement device for unsaturated silty soil[J]. , 2010, 31(11): 3678 -3682 .
[3] WANG Zhi-ping,HU Min-yun,XIA Ling-tao. Research on compressibility of municipal solid waste by laboratory tests[J]. , 2009, 30(6): 1681 -1686 .
[4] JIA Qiang, YING Hui-qing, ZHANG Xin. Construction of basement in existing buildings by static bolt-pile[J]. , 2009, 30(7): 2053 -2057 .
[5] LU Jun-fu,WANG Ming-nian,JIA Yuan-yuan,YU Yu, TAN Zhong-sheng. Research on construction time of secondary lining of large section loess tunnel for high-speed railway[J]. , 2011, 32(3): 843 -848 .
[6] FANG Tao , LIU Xin-rong , GENG Da-xin , LUO Zhao , JI Xiao-tuan , ZHENG Ming-xin . Model testing study of vertical bearing behaviors for large diameter pile with variable cross-section (I)[J]. , 2012, 33(10): 2947 -2952 .
[7] HU Wan-yu ,CHEN Xiang-hao ,LIN Jiang ,KUANG Lei-qiang . In-situ drilling tests of seepage in gravel soil core wall during the first impoundment in Pubugou hydropower station[J]. , 2013, 34(5): 1259 -1263 .
[8] ZHU Xing ,XU Qiang ,TANG Ming-gao ,FU Xiao-min ,ZHOU Jian-bin . Experimental study of infrasound wave generated by typical rock fracture[J]. , 2013, 34(5): 1306 -1312 .
[9] HUANG Cheng, YANG Chun-he, Lü Tao. Probabilistic evaluation of numerical simulation of geomechanics[J]. , 2008, 29(3): 727 -733 .
[10] LIU Jin-yun , CHEN Jian-yun . A similarity technique for water-conveyance tunnel dynamic model test considering fluid-structure coupling[J]. , 2008, 29(12): 3387 -3392 .