Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (4): 1347-1356.doi: 10.16285/j.rsm.2019.1053

• Geotechnical Engineering • Previous Articles     Next Articles

Study on the relationship between cross-hole sonic wave and single-hole sonic wave of rock mass at Jinping I hydropower station

YANG Jing-xi1, HUANG Shu-ling2, LIU Zhong-xu1   

  1. 1. Chengdu Engineering Corporation Limited, Power China, Chengdu, Sichuan 610072, China; 2. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan, Hubei 430010, China
  • Received:2019-06-14 Revised:2019-07-27 Online:2020-04-11 Published:2020-07-01
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2017YFC1501305) and the National Natural Science Foundation of China (51779018, 51539002).

Abstract: Acoustic wave velocity is a comprehensive single index for evaluating the engineering geological characteristics of rock mass, such as compactness and hardness of rock, integrity, inlay and so on. It has been widely used in the rock quality inspection and consolidation grouting evaluation. In the prophase prospecting of Jinping I hydropower station, more than 22 000 meters cross-hole and single-hole sonic wave tests by the pressure plate in horizontal tunnel, as well as over 11 400 meters single-hole borehole sonic wave test were carried out. During the construction phase, more than 11 000 meters single-hole sonic wave test, 2 380 meters cross-hole and single-hole sonic wave tests in 263 holes as well as cross-hole and single-hole sonic wave tests by the pressure plate at 58 test points were carried out at the dam foundation and resistance body on the left bank. Then, the cross-hole and single-hole sonic wave tests of the two stages were analyzed based on the different statistical methods (length of hole and number of holes). The results show that the velocity of single-hole sonic wave (Vp) is generally higher than that of cross-hole sonic wave (Vcp). The ratio of Vp /Vcp ranges from 1.05 to 1.20. The velocity relationship between the single-hole sonic wave and the cross-hole sonic wave can be described by the formula Vcp =1.160 8Vp?1.023 2. And the correlation formula between the deformation modulus of rock mass and the single-hole acoustic wave velocity obtained by this formula can be used to predict the deformation modulus of different rock mass grades. The results above can provide basis for predicting the velocity of cross-hole sonic wave and deformation modulus of rock mass in similar hydropower and water conservancy projects.

Key words: Jinping I hydropower station, rock mass, cross-hole sonic wave, single-hole sonic wave, relationship

CLC Number: 

  • TU 455
[1] ZHANG Yu-fei, LI Jian-chun, YAN Ya-tao, LI Hai-bo, . Experimental study on dynamic damage characteristics of roughness joint surface based on SHPB [J]. Rock and Soil Mechanics, 2021, 42(2): 491-500.
[2] WANG Xu-yi, HUANG Shu-ling, DING Xiu-li, ZHOU Huo-ming. Study on the effect of inhomogeneous bedding plane on the mechanical properties of uniaxial compression of layered rock mass [J]. Rock and Soil Mechanics, 2021, 42(2): 581-592.
[3] CHEN Qing-fa, YANG Cheng-ye, YIN Ting-chang, WANG Yu, . Combination relationship of ore block structures in metal mines [J]. Rock and Soil Mechanics, 2020, 41(S1): 74-82.
[4] ZHOU Hong-fu, LIU Bin, . Parameter research for hard and soft layered rock mass of the integrated deformation modulus under practice building load [J]. Rock and Soil Mechanics, 2020, 41(9): 3066-3076.
[5] GAO Wei, HU Cheng-jie, HE Tian-yang, CHEN Xin, ZHOU Cong, CUI Shuang, . Study on constitutive model of fractured rock mass based on statistical strength theory [J]. Rock and Soil Mechanics, 2020, 41(7): 2179-2188.
[6] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[7] WU Xin-lin, ZHANG Xiao-ping, LIU Quan-sheng, LI Wei-wei, HUANG Ji-min. Prediction and classification of rock mass boreability in TBM tunnel [J]. Rock and Soil Mechanics, 2020, 41(5): 1721-1729.
[8] XIA Cai-chu, WANG Yue-song, ZHENG Jin-long, LÜ Zhi-tao. Study of differential frost heave of fractured rock mass [J]. Rock and Soil Mechanics, 2020, 41(4): 1161-1168.
[9] WANG Kai-xing, DOU Lin-ming, PAN Yi-shan, OPARIN V N . Experimental study of incompatible dynamic response feature of block rock mass [J]. Rock and Soil Mechanics, 2020, 41(4): 1227-1234.
[10] MENG Qing-bin, QIAN Wei, HAN Li-jun, YU Li-yuan, WANG Cong-kai, ZHOU Xing. Experimental study on formation mechanism and mechanical properties of regenerated structure of very weak cemented rock mass [J]. Rock and Soil Mechanics, 2020, 41(3): 799-812.
[11] ZHANG Jin-peng, LIU Li-min, LIU Chuan-xiao, SUN Dong-ling, SHAO Jun, LI Yang, . Research on mechanism of bolt-grouting reinforcement for deep fractured rock mass based on prestressed anchor and self-stress grouting [J]. Rock and Soil Mechanics, 2020, 41(11): 3651-3662.
[12] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
[13] LU Hai-feng, MENG Xiang-shuai, YAN Wei, YAO Duo-xi, . Circular sliding solution of mining stability and failure depth of floor layered structure on coal face [J]. Rock and Soil Mechanics, 2020, 41(1): 166-174.
[14] WENG Yong-hong, ZHANG Lian, XU Tang-jin, HUANG Shu-ling, DING Xiu-li, . Safety evaluation on interaction of new plug structure and surrounding rock mass under high water head [J]. Rock and Soil Mechanics, 2020, 41(1): 242-252.
[15] XIAO Yao, DENG Hua-feng, LI Jian-lin, ZHI Yong-yan, XIONG Yu. The deterioration effect of fractured rock mass strengthened by grouting method under long-term immersion [J]. Rock and Soil Mechanics, 2019, 40(S1): 143-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[2] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[3] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[4] LENG Wu-ming, YANG Qi, LIU Qing-tan, NIE Ru-song. Study of new method for calcutating response of piled bridge abutment in soft ground[J]. , 2009, 30(10): 3079 -3085 .
[5] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[6] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[7] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[8] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[9] XU Han,HUANG Bin,RAO Xi-bao,HE Xiao-min,XU Yan-yong. Consolidation and drainage effect of drilling and sand replacement samples in consolidated drained triaxial tests[J]. , 2009, 30(11): 3242 -3248 .
[10] JIA Yu-feng,CHI Shi-chun,LIN Gao. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. , 2009, 30(11): 3261 -3266 .