Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (8): 2298-2310.doi: 10.16285/j.rsm.2020.1475

• Numerical Analysis • Previous Articles     Next Articles

A rock modeling method of multi-parameters fitting in EDEM

SHEN Hao-han, ZHANG Hai, FAN Jun-kai, XU Rui-yang, ZHANG Xiao-ming   

  1. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, Henan 454002, China
  • Received:2020-09-30 Revised:2021-04-08 Online:2021-08-11 Published:2021-08-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51975189).

Abstract: Based on the Hertz-Mindlin with bonding (HMB) contact model in EDEM, the modeling method of the rock discrete element model was investigated. First of all, all of the bonds in HMB rock model must be “weak bond”, i.e., the tensile strength of the bond is less than its critical normal stress. Then, the regression relationships between the elastic modulus , Poisson’s ratio , tensile strength of rock model and the particle and bond parameters were established, respectively. According to the three regression relationships, a mathematical model that can fit the real-rock’s E, , and through the HMB model was proposed. For the compressive strength of rock, when the critical stress ratio ( = / , is critical normal stress, and is critical tangential stress) ranges from 1 to 2, is influenced by , and the ratio of critical normal to tangential stress. Especially, when the is closed to 1.5, the failure mode of the rock model presents a better agreement with the experiment result. In addition, when the is constant, a linear relationship between the and can be clearly observed. In conclusion, a HMB model based modeling method that can fit the elastic modulus, Poisson’s ratio, tensile strength, compressive strength and the failure form of rock sample was proposed, and the detail steps were also given. Finally, an example was conducted to verify the proposed modeling method. The results showed that the rock models established through the proposed method can fit both the static and dynamic mechanical properties of rock.

Key words: rock, multi-parameters, fitting, modeling

CLC Number: 

  • TU 452
[1] ZHANG Chao, YANG Chu-qing, BAI Yun. Investigation of damage evolution and its model of rock-like brittle materials [J]. Rock and Soil Mechanics, 2021, 42(9): 2344-2354.
[2] XU Ding-ping, GUO Guang-tao, XIA Yue-lin, LIU Xiu-yang, JIANG Quan, LI Shao-jun, LI Zhi-guo, . Macro-meso experimental study of intermediate principal stress effect on rockburst of Shuangjiangkou granite under high stress and strong unloading [J]. Rock and Soil Mechanics, 2021, 42(9): 2375-2386.
[3] QUE Xiang-cheng, ZHU Zhen-de, NIU Zi-hao, HUANG Hao-nan, . Deformation and strength anisotropy of columnar jointed rock mass with different cross-sectional shapes [J]. Rock and Soil Mechanics, 2021, 42(9): 2416-2426.
[4] DONG Wei, WANG Xue-bin, . A reliable-subset DIC method for deformation measurements in similarity simulation experiments of geotechnical engineering [J]. Rock and Soil Mechanics, 2021, 42(9): 2525-2534.
[5] CAI Can, ZHANG Pei, SUN Ming-guang, YANG Ying-xin, XIE Song, PU Zhi-cheng, YANG Xian-peng, GAO Chao, TAN Zheng-bo. Mechanism of rock breaking under combining of separated impact and cutting in oil and gas drilling [J]. Rock and Soil Mechanics, 2021, 42(9): 2535-2544.
[6] ZHANG Jian-cong, JIANG Quan, HAO Xian-jie, FENG Guang-liang, LI Shao-jun, WANG Zhi-lin, FAN Qi-xiang, . Analysis of stress-structural collapse mechanism of columnar jointed basalt under high stress [J]. Rock and Soil Mechanics, 2021, 42(9): 2556-2568.
[7] ZHU Sheng, LU Zhi-shi, LIU Chun, WANG Jing, . Field vibration compaction test of rockfill and its application [J]. Rock and Soil Mechanics, 2021, 42(9): 2569-2577.
[8] DU Song, XIAO Ming, CHEN Jun-tao, . Catastrophe progression method for geological block hazard analysis of underground caverns [J]. Rock and Soil Mechanics, 2021, 42(9): 2578-2588.
[9] JIANG Shui-hua, OUYANG Su, FENG Ze-wen, KANG Qing, HUANG Jin-song, YANG Zhi-gang, . Reliability analysis of jointed rock slopes using updated probability distributions of structural plane parameters [J]. Rock and Soil Mechanics, 2021, 42(9): 2589-2599.
[10] WANG Xing-kai, XIA Cai-chu, ZHU Zhe-ming, XIE Wen-bing, SONG Lei-bo, HAN Guan-sheng, . Long-term creep law and constitutive model of extremely soft coal rock subjected to single-stage load [J]. Rock and Soil Mechanics, 2021, 42(8): 2078-2088.
[11] QIAO Chen, WANG Yu, SONG Zheng-yang, LI Chang-hong, HOU Zhi-qiang, . Experimental study on the evolution characteristics of cyclic frost heaving pressure of saturated fractured granite [J]. Rock and Soil Mechanics, 2021, 42(8): 2141-2150.
[12] FENG Zhong-ju, JIANG Guan, ZHAO Rui-xin, LONG Hou-sheng, WANG Zheng-bin, ZHANG Zheng-xu, . Study on pre-stress long term loss of anchor cable considering coupled multiple factors [J]. Rock and Soil Mechanics, 2021, 42(8): 2215-2224.
[13] WU Zhen-hua, PAN Peng-zhi, PAN Jun-feng, WANG Zhao-feng, GAO Jia-ming, . Analysis of mechanism of rock burst and law of mining induced events in graben structural area [J]. Rock and Soil Mechanics, 2021, 42(8): 2225-2238.
[14] YU Chong, YUE Hao-zhen, LI Hai-bo, ZHOU Chuan-bo, CHEN Shi-hai, SHAO Zhu-shan, . Analysis of blasting control parameters and reliability based on rock mass quality [J]. Rock and Soil Mechanics, 2021, 42(8): 2239-2249.
[15] CUI Wei, WANG Li-xin, JIANG Zhi-an, WANG Chao, WANG Xiao-hua, ZHANG She-rong, . Numerical simulation of grouting process in rock mass with rough fracture network based on corrected cubic law [J]. Rock and Soil Mechanics, 2021, 42(8): 2250-2258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .