Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (5): 1317-1325.doi: 10.16285/j.rsm.2021.1267

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Model tests on installation behavior of modified suction caissons in layered soil

ZHANG Yu-kun1, QIN Ting-hui1, LI Da-yong1, 2, WANG Chong-chong1   

  1. 1. Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 2. College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
  • Received:2021-08-09 Revised:2021-12-23 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51808325, 51879044, 51639002) and the Natural Science Foundation of Shandong Province (ZR2019BEE007).

Abstract: Model tests were conducted to investigate the installation behavior of modified suction caisson (MSC) and regular suction caisson (RSC) in layered soil (sand, clay, sand over clay and clay over sand). It was found that the MSC can penetrate the layered soil to the desired depth. The final penetration depths for MSC in sand, clay, sand over clay and clay over sand increase approximately 10.0%, 2.3%, 3.0% and 9.6%, compared with the RSC. In addition, the maximum required suctions for MSC in sand, clay, sand over clay and clay over sand increase approximately 0.9%, 14.4%, 66.2% and 92.2%, compared with the RSC. It was found that the installation behavior of MSC in layered soil is strongly influenced by the position and the thickness of the clay layer. When the MSC penetrates clay over sand, the maximum value of suction is achieved when the suction caisson tip contacts the interface between sand and clay. The maximum applied suction increases with increasing the soil distribution coefficient t (ratio of upper soil thickness to the total soil thickness). However, the final penetration depth was found to decrease with increasing the t value. When the MSC penetrates sand over clay, the maximum applied suction was obtained at the final penetration depth. The maximum applied suction decreases with increasing the t value. The soil distribution coefficient has little effect on the final penetration depth for MSC in sand over clay. In addition, the installation way effectively influences the final penetration depth. The final penetration depths for MSC in sand, clay, clay over sand ( 0.4) and sand over clay ( 0.4) under the installation way of simultaneously pumping out water in the internal compartment and external structure increase about 13.8%, 3.4%, 16.4% and 4.6%, compared with those under the installation way of only pumping out water in the internal compartment. This study results can guide the design and construction of the suction caisson in layered soil.

Key words: modified suction caisson (MSC), layered soil, model test, installation way, suction variations, soil plug height

CLC Number: 

  • P 751
[1] MA Jian-jun, HAN Shu-juan, GAO Xiao-juan, LI Da, GUO Ying, . Dynamic response analysis of the partially-embedded single pile affected by scour in layered soils [J]. Rock and Soil Mechanics, 2022, 43(6): 1705-1716.
[2] LEI Hua-yang, WANG Lei, LIU Jing-jin, WANG Peng, ZHANG Wei-di, BO Yu, . Experimental analysis of chemical modification combined with vacuum preloading method for reinforcing dredger fill [J]. Rock and Soil Mechanics, 2022, 43(4): 891-900.
[3] DAI Bei-bing, LI Tian-qi, YANG Jun, LIU Feng-tao, . An experimental investigation of the fabric effect on angle of repose [J]. Rock and Soil Mechanics, 2022, 43(4): 957-968.
[4] LIN Dan-tong, HU Li-ming. Model tests on the transport behavior of phosphate-sorbed nano zero-valent iron in porous media [J]. Rock and Soil Mechanics, 2022, 43(2): 337-344.
[5] ZHOU Guang-xin, SHENG Qian, CUI Zhen, WANG Tian-qiang, MA Ya-li-na, FU Xing-wei, . Model test of failure mechanism of tunnel with flexible joint crossing active fault under strike-slip fault dislocation [J]. Rock and Soil Mechanics, 2022, 43(1): 37-50.
[6] XIAO Fei, KONG Ling-wei, LIU Guan-shi, FENG Heng, DONG Yi-yi, ZENG Er-xian, . Uplift model test and capacity calculation method of metal grillage foundation in medium dense aeolian sand [J]. Rock and Soil Mechanics, 2022, 43(1): 65-75.
[7] WU Hui-ming, ZHAO Zi-rong, LIN Xiao-fei, SHI Jian-qian, GONG Xiao-nan, . Model test of active drainage consolidation method on air-lift effect [J]. Rock and Soil Mechanics, 2021, 42(8): 2151-2159.
[8] LI Yuan-hai, LIU De-zhu, YANG Shuo, KONG Jun, . Experimental investigation on surrounding rock stress and deformation rule of TBM tunneling in deep mixed strata [J]. Rock and Soil Mechanics, 2021, 42(7): 1783-1793.
[9] LIU Zhi-peng, KONG Gang-qiang, WEN Lei, WANG Zhi-hua, QIN Hong-yu, . Model tests on uplift and lateral bearing characteristics of inclined helical pile group embedded in sand [J]. Rock and Soil Mechanics, 2021, 42(7): 1944-1950.
[10] ZHAO Hai-peng, LI Xue-you, WAN Jian-hong, ZHENG Xiang-zhi, LIU Si-wei, . Analysis of laterally-loaded piles embedded in multi-layered soils using efficient finite-element method [J]. Rock and Soil Mechanics, 2021, 42(7): 1995-2003.
[11] RAO Pei-sen, LI Dan , MENG Qing-shan, WANG Xin-zhi, FU Jin-xin, LEI Xue-wen, . Study on earth pressure distribution characteristics of calcareous sand foundation under cyclic loading [J]. Rock and Soil Mechanics, 2021, 42(6): 1579-1586.
[12] GUO Ming-wei, MA Huan, YANG Zhong-ming, WANG Bin, DONG Xue-chao, WANG Shui-lin, . Settlement analysis of large open caisson foundation at construction stage of Changtai Yangtze River Bridge [J]. Rock and Soil Mechanics, 2021, 42(6): 1705-1712.
[13] SHEN Yang, FENG Zhao-yan, DENG Jue, CHEN Kai-jia, XU Jun-hong, . Model test on bearing capacity of coral sand foundation in the South China Sea [J]. Rock and Soil Mechanics, 2021, 42(5): 1281-1290.
[14] ZHANG Yu, LI Da-yong, LIANG Hao, ZHANG Yu-kun, . Model tests on horizontal bearing capacity and earth pressure distribution of hollow cone-shaped foundation under horizontal monotonic loading [J]. Rock and Soil Mechanics, 2021, 42(5): 1404-1412.
[15] LI Qing-song, WEN Lei, KONG Gang-qiang, GAO Hong-mei, SHEN Zhi-fu, . Theoretical computation of the uplift bearing capacity of helical piles based on cavity expansion method [J]. Rock and Soil Mechanics, 2021, 42(4): 1088-1094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .