Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (7): 2015-2024.doi: 10.16285/j.rsm.2021.1677

• Numerical Analysis • Previous Articles     Next Articles

Stochastic seismic response analysis of engineering site considering correlations of critical soil dynamic parameters

ZHONG Zi-lan, SHI Yue-bo, LI Jin-qiang, ZHAO Mi, DU Xiu-li   

  1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing university of technology, Beijing 100124, China
  • Received:2021-10-04 Revised:2022-03-28 Online:2022-07-26 Published:2022-08-05
  • Supported by:
    This work was supported by General Program of National Natural Science Foundation of China (51978020), the Joint Funds of the National Natural Science Foundation of China (U1839201), the Open Research Fund Program of Guangdong Key Laboratory of Earthquake Engineering and Application Technology (Guangzhou University) (2017B030314068).

Abstract: This paper presents a method to generate random samples of soil dynamic shear modulus and dynamic damping curves with full consideration of the correlations of critical soil dynamic parameters to investigate the influence of their uncertainties on the engineering site seismic response in the implementation of equivalent linearization method. A one-dimensional (1D) equivalent linear site seismic response analysis program, which serves stochastic dynamic response analysis of the engineering site, has been developed in MATLAB. A 1D free field model for the typical layered engineering sites of site class II is established in this study. The target response spectra, which are defined with spectra of the outcrop corresponding to different earthquake return periods based on the acceleration response, are employed to generate artificial seismic records. These records are scaled down by ½ and referred to as input motions at the engineering bedrock for the 1D free field model. The numerical results show that the uncertainties of the critical soil dynamic parameters has significant influence on seismic response of engineering sites, which are highly related to the amplitude and the frequency aspects of the input ground motions as well as the fundamental periods of the engineering sites. The variations of the peak shear strain and the peak ground acceleration of the site, which reach 10% and 14%, respectively, increase with the amplitudes of the input ground motions. Besides, the variations of acceleration response spectra corresponding to the plateaus of the target response spectra and the fundamental periods of engineering sites exceeds 20% with the consideration of the uncertainties of soil dynamic parameters.

Key words: site seismic response analysis, soil dynamic parameters, uncertainty, correlation, equivalent linear method

CLC Number: 

  • TU 441
[1] ZHANG Dong-xiao, GUO Wei-yao, ZHAO Tong-bin, GU Xue-bin, CHEN Le-xin, . Experimental study on directional propagation of rock type-Ⅰ crack [J]. Rock and Soil Mechanics, 2022, 43(S2): 231-244.
[2] YANG Zhi-yong, YIN Cheng-chuan, NIE Jia-yan, LI Xue-you, QI Xiao-hui, . Probability density function estimation of geotechnical parameters considering the three-dimensional spatial variability based on multi-source site investigation data [J]. Rock and Soil Mechanics, 2022, 43(6): 1571-1584.
[3] PENG Shou-jian, ZHANG Qian-wen, XU Jiang, CHEN Yi-an, CHEN Can-can, CAO Qi, RAO Hao-kui, . Experimental study of deformation localization characteristics of sandstone under seepage-stress coupling based on 3D digital image correlation technology [J]. Rock and Soil Mechanics, 2022, 43(5): 1197-1206.
[4] LI Di-yuan, GAO Fei-hong, LIU Meng, MA Jin-yin. Research on failure mechanism of stratified sandstone with pre-cracked hole under combined static-dynamic loads [J]. Rock and Soil Mechanics, 2021, 42(8): 2127-2140.
[5] YU Chong, YUE Hao-zhen, LI Hai-bo, ZHOU Chuan-bo, CHEN Shi-hai, SHAO Zhu-shan, . Analysis of blasting control parameters and reliability based on rock mass quality [J]. Rock and Soil Mechanics, 2021, 42(8): 2239-2249.
[6] ZHOU Yong-qiang, SHENG Qian, LI Na-na, FU Xiao-dong, . Preliminary study on time-space effect of the dynamic response of long tunnel under non-uniform ground motion [J]. Rock and Soil Mechanics, 2021, 42(8): 2287-2297.
[7] QI Fei-fei, ZHANG Ke, XIE Jian-bin, . Fracturing mechanism of rock-like specimens with different joint densities based on DIC technology [J]. Rock and Soil Mechanics, 2021, 42(6): 1669-1680.
[8] SUN Wen-jin, JIN Ai-bing, WANG Shu-liang, ZHAO Yi-qing, WEI Li-chang, JIA Yu-chun, . Study on sandstone split mechanical properties under high temperature based on the DIC technology [J]. Rock and Soil Mechanics, 2021, 42(2): 511-518.
[9] LIU Xiang-hua, ZHANG Ke, LI Na, QI Fei-fei, YE Jin-ming, . Quantitative identification of the failure behavior of the 3D printed rock-like specimen with one hole and two flaws [J]. Rock and Soil Mechanics, 2021, 42(11): 3017-3028.
[10] XU Hao-chun, JIN Ai-bing, ZHAO Yi-qing, WANG Ben-xin, WEI Li-chang, . Experimental studies on split mechanical properties and fracture evolution behavior of bedding sandstone after high-temperature treatment [J]. Rock and Soil Mechanics, 2021, 42(11): 3069-3078.
[11] SONG Yi-min, LING Xiao-kang, ZHANG Jing-zong, ZHU Chen-li, REN He, YUAN De-shun. Inversion of mechanical parameters of geomaterials based on DSCM-FEM [J]. Rock and Soil Mechanics, 2021, 42(10): 2855-2864.
[12] XU Jiang, SONG Xiao-zheng, PENG Shou-jian, CHEN Can-can, RAN Xiao-meng, YAN Fa-zhi, . Experimental study of generalized stress relaxation of rock based on 3D-DIC technology [J]. Rock and Soil Mechanics, 2021, 42(1): 27-38.
[13] ZHANG Ke, LI Na, CHEN Yu-long, LIU Wen-lian, . Evolution characteristics of strain field and infrared radiation temperature field during deformation and rupture process of fractured sandstone [J]. Rock and Soil Mechanics, 2020, 41(S1): 95-105.
[14] ZHANG Ke, QI Fei-fei, CHEN Yu-long, . Deformation and fracturing characteristics of fracture network model and influence of filling based on 3D printing and DIC technologies [J]. Rock and Soil Mechanics, 2020, 41(8): 2555-2563.
[15] JIN Ai-bing, WANG Shu-liang, WANG Ben-xin, SUN Hao, CHEN Shuai-jun, ZHU Dong-feng, . Fracture mechanism of specimens with 3D printing cross joint based on DIC technology [J]. Rock and Soil Mechanics, 2020, 41(12): 3862-3872.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .