Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (8): 2263-2276.doi: 10.16285/j.rsm.2021.1826

• Geotechnical Engineering • Previous Articles     Next Articles

Static and seismic active earth pressure on rigid retaining walls based on horizontal slice method considering shear forces on interslice

CHEN Bai-ji1, 2, 3, XIAO Shi-guo2   

  1. 1. Department of Geological Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Key Laboratory of High-speed Railway Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. Dayi Archives Bureau, Chengdu, Sichuan 611330, China
  • Received:2021-11-28 Revised:2022-04-20 Online:2022-08-11 Published:2022-08-19
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51578466) and the Construction S&T Project of Department of Transportation of Sichuan Province (2020-A-01).

Abstract: In view of the existing unreasonable assumption on interslice shear forces involved in the horizontal slice limit equilibrium method for active earth pressure on rigid retaining walls, a mobilized coefficient of the interslice shear strength of the soil is proposed and its development mode is assumed to be 3 types of function including sine, linear, and hyperbolic patterns. A series of statistical values of the coefficient is given based on a great number of model test and in-situ observed results of the earth pressure. Further, static and seismic active earth pressure on rigid retaining walls can be determined using the horizontal slice method and pseudo-static approach with rationally considering the shear forces on interslice. Planar and log-spiral modes of potential slip surfaces of the retained soil are involved in the proposed method, which takes into account wall configuration, soil properties as well as external loads. It is found that the mobilized coefficient is not usually zero in the condition that wall-soil friction angle is equal to soil internal frictional angle or half of it, and the coefficient is greatly influenced by the wall-soil friction angle. The hyperbolic profile of the mobilized coefficient for wall translation and the sine mode for wall rotation about its heel are recommended because that the introduction of the mobilized coefficient can make the application points of the resultant of the active earth pressure relatively approach to the measured values. Internal friction angle of the soil, wall-soil cohesion, and vertical seismic factor have little effect on the application point of the resultant, while the soil cohesion, dip angle of the soil top surface, wall back inclination, wall-soil friction angle, and horizontal seismic factor have a greater influence. Some examples show that calculation results including the resultant and its application point of the active earth pressure using the proposed method are in good agreement with those monitored, and the maximum errors are less than about 10% and 7%, respectively.

Key words: rigid retaining walls, active earth pressure, horizontal slice method, interslice shear forces, distribution mode

CLC Number: 

  • TU 431
[1] DENG Bo, YANG Ming-hui, WANG Dong-xing, FAN Jun-wei, . Failure mode and active earth pressure calculation of unsaturated soil behind rigid retaining wall [J]. Rock and Soil Mechanics, 2022, 43(9): 2371-2382.
[2] LIU Xin-xi, LI Bin, WANG Wei-wei, HE Cheng, LI Song. Calculation of active earth pressure of finite soil based on layered principal stress trajectory [J]. Rock and Soil Mechanics, 2022, 43(5): 1175-1186.
[3] ZHANG Heng-zhi, XU Chang-jie, HE Zhai-bing, HUANG Zhan-jun, HE Xiao-hui, . Study of active earth pressure of finite soils under different retaining wall movement modes based on discrete element method [J]. Rock and Soil Mechanics, 2022, 43(1): 257-267.
[4] ZHANG Heng-zhi, XU Chang-jie, LIANG Lu-ju, HOU Shi-lei, FAN Run-dong, FENG Guo-hui. Discrete element simulation and theoretical study of active earth pressure against rigid retaining walls under RB mode for finite soils [J]. Rock and Soil Mechanics, 2021, 42(10): 2895-2907.
[5] CHEN Jian-gong, YANG Yang, CHEN Yan-han, CHEN Xiao-bing. Calculation of active earth pressure of cohesive soil behind retaining wall considering soil tensile strength [J]. Rock and Soil Mechanics, 2020, 41(6): 1829-1835.
[6] XIAO Shi-guo, LIU Hang, YU Xin-zuo. Analysis method of seismic overall stability of soil slopes retained by gravity walls anchored horizontally with flexible reinforcements [J]. Rock and Soil Mechanics, 2020, 41(6): 1836-1844.
[7] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[8] LIU Yang, YU Peng-qiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls [J]. Rock and Soil Mechanics, 2019, 40(2): 506-516.
[9] LIU Mei-lin, HOU Yan-Juan, ZHANG Ding-li, FANG Qian. Research on active earth pressure of flexible retaining wall considering construction effect of foundation pit in sandy soil [J]. , 2018, 39(S1): 149-158.
[10] ZHU De-fu, TU Shi-hao, YUAN Yong, MA Hang-sheng, LI Xiang-yang, . An approach to determine the compaction characteristics of fractured rock by 3D discrete element method [J]. , 2018, 39(3): 1047-1055.
[11] YAN Shu-wang, LI Jia, YAN Yue, LANG Rui-qing, JI Yu-cheng, . A solution for axisymmetric active earth pressure by slip line method [J]. , 2018, 39(11): 4133-4141.
[12] YANG Gui, WANG Yang-yang, LIU Yan-chen, . Analysis of active earth pressure on retaining walls based on curved sliding surface [J]. , 2017, 38(8): 2182-2188.
[13] YANG Ming-hui, DAI Xia-bin, ZHAO Ming-hua, LUO Hong. Calculation of active earth pressure for limited soils with curved sliding surface [J]. , 2017, 38(7): 2029-2035.
[14] LUO Han, LI Rong-jian, LIU Jun-ding, HUO Xü-ting, ZHANG Zhen, SUN Ping,. Comparison of active earth pressure formulations of loess based on joint strength [J]. , 2017, 38(7): 2080-2086.
[15] ZHANG Jian, WANG Xin-Zheng, HU Rui-lin,. Analysis of seismic active earth pressure of backfill with infinite inclined surface behind non-vertical retaining wall [J]. , 2017, 38(4): 1069-1074.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .