Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (5): 1175-1186.doi: 10.16285/j.rsm.2021.1441

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Calculation of active earth pressure of finite soil based on layered principal stress trajectory

LIU Xin-xi, LI Bin, WANG Wei-wei, HE Cheng, LI Song   

  1. School of Civil Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
  • Received:2021-08-26 Revised:2022-01-13 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51674041) and the Research and Innovation Program for Postgraduates in Hunan Province(CX20200839).

Abstract: To study the active earth pressure of finite soil behind the retaining wall, the cohesionless soil behind the wall is taken as the research object. The fracture surface is assumed as the plane passing through the heel of the wall, and in the translational mode of the retaining wall, the soil behind the retaining wall forms an arc-shaped small principal stress arch. The soil behind the retaining wall is divided into several curve thin-layer elements by the stratification method along the small principal stress. Considering the inhomogeneity of stress distribution on the upper and lower surface of the element, a calculation method is proposed for the active earth pressure of finite soil retaining wall. The expressions of active earth pressure resultant force and the height of its action point are given, and the correctness of this method is verified. The results show that the curve thin-layer element method can accurately consider the complex stress condition of the element, and can better reflect the variation law of the active earth pressure of finite soil behind the retaining wall. The active earth pressure shows a nonlinear distribution along the wall height H, it firstly increases with the soil depth increasing, then decreases monotonically near the bottom of the wall. In parameter sensitivity analysis, the distribution of active earth pressure of retaining wall and the height of combined force applied point are analyzed with different width-height ratios of soil and wall back roughness. The results show that with the increase of width-height ratio n, the active earth pressure gradually increases, the curve of earth pressure distribution becomes more and more nonlinear, the height of resultant force application point gradually decreases, and it is always greater than . It tends to be stable when n is greater than 0.71, so 0.71 can be assumed as the critical width-height ratio of finite soil and semi-infinite soil. The active earth pressure decreases gradually with the increase of the frictional angle ; the curve of earth pressure distribution becomes more and more nonlinear, the height of resultant force application point increases gradually and is always greater than .

Key words: retaining wall, finite soil, active earth pressure, small principal stress trajectory, curve thin layer element

CLC Number: 

  • TU 432
[1] FERRO Edgar, OSS Andrea, SIMEONI Lucia, . Seismic analysis of cantilever earth retaining walls embedded in dry sand by simplified approaches and finite element method [J]. Rock and Soil Mechanics, 2022, 43(6): 1617-1634.
[2] DONG Jian-hua, WU Xiao-lei, SHI Li-jun, YU Xiao-yan, HE Peng-fei, . Calculation method and analysis of horizontal frost heave effect of L-shaped retaining wall in permafrost regions [J]. Rock and Soil Mechanics, 2022, 43(4): 879-890.
[3] ZHANG Heng-zhi, XU Chang-jie, HE Zhai-bing, HUANG Zhan-jun, HE Xiao-hui, . Study of active earth pressure of finite soils under different retaining wall movement modes based on discrete element method [J]. Rock and Soil Mechanics, 2022, 43(1): 257-267.
[4] YANG Guang-qing, NIU Xiao-di, ZHOU Shi-guang, LI An-hong, WANG Zhi-meng, WANG Zhi-jie, . Experimental study on structural behavior of reinforced retaining wall with composite full-height rigid facing [J]. Rock and Soil Mechanics, 2021, 42(7): 1794-1802.
[5] HE Jiang, XIAO Shi-guo, . Calculation method for seismic permanent displacement of assembled multi-step cantilever retaining walls [J]. Rock and Soil Mechanics, 2021, 42(7): 1971-1982.
[6] LI Zhi-hao, XIAO Shi-guo. Calculation method for seismic permanent displacement of cantilever retaining walls considering different movement modes [J]. Rock and Soil Mechanics, 2021, 42(3): 723-734.
[7] SHI Feng, LU Kun-lin, YIN Zhi-kai. Determination of three-dimensional passive slip surface of rigid retaining walls in translational failure mode and calculation of earth pressures [J]. Rock and Soil Mechanics, 2021, 42(3): 735-745.
[8] ZHENG Jun-jie, SHAO An-di, XIE Ming-xing, JING Dan, . Experimental study on retaining wall with EPS cushion under different backfill widths [J]. Rock and Soil Mechanics, 2021, 42(2): 324-332.
[9] LU Liang, HE Lin-yao, WANG Zong-jian, KATSUHIKO ARAI, . Partition calculation theory of horizontal displacement in reinforced earth retaining wall under earthquake [J]. Rock and Soil Mechanics, 2021, 42(2): 401-410.
[10] HOU Tian-shun, YANG Kai-xuan. Model test on earth pressure at rest of light weight soil mixed with EPS particles behind a retaining wall [J]. Rock and Soil Mechanics, 2021, 42(12): 3249-3259.
[11] ZHANG Fei, JIA Shi-lin, ZHU Yu-ming, LU Xiao-yi, SHU Shuang, . Required strength of geosynthetics in reinforced multi-tiered wall [J]. Rock and Soil Mechanics, 2021, 42(11): 3079-3089.
[12] ZHANG Heng-zhi, XU Chang-jie, LIANG Lu-ju, HOU Shi-lei, FAN Run-dong, FENG Guo-hui. Discrete element simulation and theoretical study of active earth pressure against rigid retaining walls under RB mode for finite soils [J]. Rock and Soil Mechanics, 2021, 42(10): 2895-2907.
[13] NIU Xiao-di, YANG Guang-qing, WANG He, DING Shuo, FENG Fan, . Field tests on structural properties of reinforced retaining walls with different panels [J]. Rock and Soil Mechanics, 2021, 42(1): 245-254.
[14] ZHANG Hui-jie, CAO Wen-gui, LIU Tao. Analysis method of passive earth pressure for retaining wall layered based on principal stress trajectory [J]. Rock and Soil Mechanics, 2020, 41(9): 3022-3030.
[15] CHEN Jian-gong, YANG Yang, CHEN Yan-han, CHEN Xiao-bing. Calculation of active earth pressure of cohesive soil behind retaining wall considering soil tensile strength [J]. Rock and Soil Mechanics, 2020, 41(6): 1829-1835.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .