Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (5): 1269-1276.doi: 10.16285/j.rsm.2021.1889

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

One-dimensional consolidation creep model for sandy grain muddy soil of Dongting Lake

HU Hui-hua1, 2, HE Jian-qing3, NIE Shi-cheng1, 2   

  1. 1. Hunan Provincial Communications Planning, Survey & Design Institute Co. Ltd, Changsha, Hunan 410008, China; 2. Hunan Provincial Key Laboratory of Highway Construction and Maintenance Technology in Southern China, Changsha, Hunan 410008, China; 3. Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China)
  • Received:2021-11-08 Revised:2022-01-19 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52078211), the Enterprise Technology Innovation Project of the Ministry of Transport of the People’s Republic of China (2015315798060) and the Natural Science Foundation of Hunan Province,China (2021JJ30252).

Abstract: In this study, one-dimensional consolidation creep test was conducted to study the consolidation creep characteristics of the sandy grain muddy soil of Dongting Lake, and an empirical creep model suitable for describing the stress-strain-time relationship of the sandy grain muddy soil of Dongting Lake was established based on the test results. The results show that there is a good linear increasing relationship between axial strain ε and time t in double logarithmic coordinate system. In addition, with the increase of consolidation stress, the slope of - relationship curve decreases significantly, and the distance between - relationship curves becomes shorter under the action of two adjacent loads. Under high stress levels, the - relationship curve tends to be horizontal, and the decrease rate of the slope of the curve is significantly reduced. Moreover, hyperbolic function is more suitable than exponential function to describe the stress-strain relationship of the sandy grain muddy soil of Dongting Lake, and it is more in line with engineering practice to modify the strain-stress relationship in Singh-Mitchell model to hyperbolic relationship. It is found that the slope of the - relationship curve has a hyperbolic function relationship with the consolidation stress. On this basis, a modified Singh-Mitchell model with five parameters reflecting the influence of stress level and suitable for describing the creep characteristics of the sandy grain muddy soil of Dongting Lake is established.

Key words: the sandy grain muddy soil, one-dimensional consolidation creep test, creep, empirical model

CLC Number: 

  • TU 411
[1] LENG Wu-ming, DENG Zhi-long, XU Fang, ZHANG Qi-shu, DONG Jun-li, LIU Si-hui. A prestress loss model for subgrade considering creep effect of subgrade soil [J]. Rock and Soil Mechanics, 2022, 43(6): 1671-1682.
[2] ZHU Wen-bo, DAI Guo-liang, WANG Bo-chen, GONG Wei-ming, WANG Hai-bo, ZHANG Yu, . Unloading creep of soft clay and long-term uplift bearing characteristics of suction caisson foundation [J]. Rock and Soil Mechanics, 2022, 43(3): 669-678.
[3] YU Hong-dan, CHEN Wei-zhong, LU Chen, YANG Dian-sen, YANG Jian-ping, WANG Zhen, . Experimental and theoretical study of the time-dependent deformation characteristics of clayey rock [J]. Rock and Soil Mechanics, 2022, 43(2): 317-326.
[4] ZHU Wen-bo, DAI Guo-liang, WANG Bo-chen, GONG Wei-ming, SUN Jie, HU Hao, . Study on cyclic characteristics and equivalent cyclic creep model of the soft clay at the bottom of suction caisson foundation [J]. Rock and Soil Mechanics, 2022, 43(2): 466-478.
[5] WANG Xing-kai, XIA Cai-chu, ZHU Zhe-ming, XIE Wen-bing, SONG Lei-bo, HAN Guan-sheng, . Long-term creep law and constitutive model of extremely soft coal rock subjected to single-stage load [J]. Rock and Soil Mechanics, 2021, 42(8): 2078-2088.
[6] FENG Zhong-ju, JIANG Guan, ZHAO Rui-xin, LONG Hou-sheng, WANG Zheng-bin, ZHANG Zheng-xu, . Study on pre-stress long term loss of anchor cable considering coupled multiple factors [J]. Rock and Soil Mechanics, 2021, 42(8): 2215-2224.
[7] LIU Xiao-yan, ZHANG Chuan-qing, SHI Tie-yong, ZHOU hui, HU Da-wei, ZHU Guo-jin, ZHU Yong, WANG Chao, . Experimental study of axis displacement mode of deep buried tunnel across active faults [J]. Rock and Soil Mechanics, 2021, 42(5): 1304-1312.
[8] ZHU Sheng, ZHANG Yuan, JIALIBIEKE Ahalibieke, YU Jian-qing, HE Zhao-sheng, . Joint inversion method of instantaneous and creep parameters of rockfill dam based on incremental analysis [J]. Rock and Soil Mechanics, 2021, 42(5): 1453-1461.
[9] LI Fu-lin, YANG Jian, LIU Wei-qun, FAN Zhen-hua, YANG Yu-gui, . Effect of loading rate changing on the mechanical properties of mudstone under uniaxial compression [J]. Rock and Soil Mechanics, 2021, 42(2): 369-378.
[10] GONG Cong, ZHAO Kun, BAO Han, ZHAO Kui, ZENG Peng, WANG Wen-jie, . Acoustic emission source evolution and fractal features during creep failure of red sandstone [J]. Rock and Soil Mechanics, 2021, 42(10): 2683-2695.
[11] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong. Effect of pore water pressure on shear creep characteristics of serrate structural plane [J]. Rock and Soil Mechanics, 2020, 41(9): 2901-2912.
[12] LI Lie-lie, GUAN Jun-feng, XIAO Ming-li, LIU Hai-chao, TANG Ke-dong, . A creep constitutive model for transversely isotropic rocks [J]. Rock and Soil Mechanics, 2020, 41(9): 2922-2930.
[13] LIU Jia-shun, JING Hong-wen, MENG Bo, WANG Lai-gui, ZHANG Xiang-dong, YANG Jian-jun, . Research on the effect of moisture content on the creep behavior of weakly cemented soft rock and its fractional-order model [J]. Rock and Soil Mechanics, 2020, 41(8): 2609-2618.
[14] WEI Yao, YANG Geng-she, SHEN Yan-jun, MING Feng, LIANG Bo, . Creep test and constitutive model of cretaceous saturated frozen sandstone [J]. Rock and Soil Mechanics, 2020, 41(8): 2636-2646.
[15] ZHUANG Xin-shan, ZHAO Han-wen, WANG Jun-xiang, HUANG Yong-jie, HU Zhi . Quantitative research on morphological characteristics of hysteretic curves of remolded weak expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(6): 1845-1854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .