Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (8): 2157-2164.doi: 10.16285/j.rsm.2022.0021

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Water retention characteristics of silt improved by three types of biopolymer

ZHANG Jun-ran, ZHAO Xin-xin, JIANG Tong   

  1. Henan Province Key Laboratory of Geomechanics and Structural Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, China
  • Received:2022-01-06 Revised:2022-02-06 Online:2022-08-11 Published:2022-08-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41602295), the Foundation for University Key Teacher by the Ministry of Education of Henan Province (2020GGJS-094) and the Key Scientific Research Projects of Colleges and Universities in Henan Province (21A410002).

Abstract: In the past, grey materials such as cement were used to build and reinforce embankments in the Yellow River basin to prevent soil erosion, which caused serious damage to ecological environment. In response to the national strategy of ecological protection and high-quality development of the Yellow River basin, environment-friendly biopolymers were used to improve the typical silt in the Yellow River basin. In this paper, the water retention characteristics of biopolymer-improved silt are measured with WP4C instrument, and the mechanism of biopolymers to improve the water retention characteristics of silt is analyzed from a microscopic point of view. Compared with unimproved soil, the water content of biopolymer modified silt after saturation increases, the void ratio increases, and the water holding capacity is significantly improved. The water retention capacities of the silts modified by xanthan gum, gellan gum and guar gum increase with increasing the gum content, and the improved effect of gellan gum surpasses those of xanthan gum and guar gum. The improvement mechanism can be explained that the biomolymer particles form hydrogel through hydration, filling the pores between particles and increasing the adhesion between particles. In addition, pore space similar to honeycomb structure is formed in the improved silt by xanthan gum and gellan gum to provide water storage space, thus improving the water retention characteristics of the improved soil. The above research results can provide a scientific basis for the safe and scientific application of biopolymer in the prevention and control of soil erosion in the Yellow River basin.

Key words: silt, xanthan gum, gellan gum, guar gum, water retention characteristic

CLC Number: 

  • TU 411.91
[1] TANG Yang, LIU Gan-bin, ZHENG Ming-fei, SHI Shi-yong, . Model test on thermal response of phase change pile in saturated silt ground [J]. Rock and Soil Mechanics, 2022, 43(S2): 282-290.
[2] MENG Fan-li, LOU Zhen-zhen, GE Wei, . Experimental study on dynamic characters of unloading silt under long-term cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(S1): 383-388.
[3] ZHANG Shu-ming, JIANG Guan-lu, YE Xiong-wei, CAI Jun-feng, YUAN Sheng-yang, LUO Bin, . A constitutive model for frozen silty sand based on binary medium model simplified by breakage parameter [J]. Rock and Soil Mechanics, 2022, 43(7): 1854-1864.
[4] LIU Ying-jing, YANG Jie, YIN Zhen-yu, . Numerical analysis of the impact of internal erosion on underground structures: application to tunnel leakage [J]. Rock and Soil Mechanics, 2022, 43(5): 1383-1390.
[5] CHEN Shu-feng, KONG Ling-wei, LUO Tao, . Lateral stress release characteristics of overconsolidated silty clay and calculation method for lateral earth pressure coefficient at rest [J]. Rock and Soil Mechanics, 2022, 43(1): 160-168.
[6] XU Long-fei, WENG Xiao-lin, ZHANG Ai-jun, ZHAO Gao-wen, WONG Henry, FABBRI Antonin, . Experimental study of water retention characteristics and vapor migration of earth material under relative humidity variation [J]. Rock and Soil Mechanics, 2021, 42(9): 2489-2498.
[7] MIAO Sheng-jun, WANG Hui, YANG Peng-jin, WANG Ya-xin, . Effect of cyclic loading near fatigue strength on mechanical properties of argillaceous quartz siltstone [J]. Rock and Soil Mechanics, 2021, 42(8): 2109-2119.
[8] LEI Xue-wen, DING Hao, WANG Xin-zhi, SHEN Jian-hua, MENG Qing-shan, . Experimental study of consolidation properties of calcareous silt [J]. Rock and Soil Mechanics, 2021, 42(4): 909-920.
[9] REN Hua-ping, LIU Xi-zhong, XUAN Ming-min, YE Xing-yu, LI Qiang, ZHANG Sheng. Study of cumulative plastic deformation of compacted silt under cyclic loading [J]. Rock and Soil Mechanics, 2021, 42(4): 1045-1055.
[10] LI Kun-peng, ZHAO Xiao-yan, XIAO Dian, LI Jin. Mechanism of silty mudstone slaking aggravated by acid rain-induced chemical damage [J]. Rock and Soil Mechanics, 2020, 41(8): 2693-2702.
[11] ZHANG Sheng, GAO Feng, CHEN Qi-lei, SHENG Dai-chao, . Experimental study of fine particles migration mechanism of sand-silt mixtures under train load [J]. Rock and Soil Mechanics, 2020, 41(5): 1591-1598.
[12] SUN Jing, GONG Mao-sheng, XIONG Hong-qiang, GAN Lin-rui, . Experimental study of the effect of freeze-thaw cycles on dynamic characteristics of silty sand [J]. Rock and Soil Mechanics, 2020, 41(3): 747-754.
[13] LIU Jian-min, QIU Yue, GUO Ting-ting, SONG Wen-zhi, GU Chuan, . Comparative experimental study on static shear strength and postcyclic strength of saturated silty clay [J]. Rock and Soil Mechanics, 2020, 41(3): 773-780.
[14] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[15] FU Hong-yuan, JIANG Huang-bin, QIU Xiang, JI Yun-peng, . Seepage characteristics of single-fracture silty mudstone under low stress and overlying water environment [J]. Rock and Soil Mechanics, 2020, 41(12): 3840-3850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .