Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (12): 3249-3258.doi: 10.16285/j.rsm.2022.0137

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of the installation effect of helical piles in saturated clay on uplift resistance

ZHOU Hang1, 2, YU Hao1, 2, ZENG Shao-hua1, 2   

  1. 1. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China; 2. College of Civil Engineering, Chongqing University, Chongqing 400045, China
  • Received:2022-02-07 Revised:2022-03-18 Online:2022-12-28 Published:2023-01-02
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China (52278330).

Abstract: Helical piles have received extensive attention in recent years due to its advantages such as convenient construction, load-bearing capacity after installation, and recyclability. However, the previous research was mainly based on the premise of ignoring the installation effect. When the installation effect was considered, researches mainly focused on the degree of disturbance to the relative density of sand. The experimental study of the installation effect in clay is not enough. In response to this problem, a model test was carried out to obtain the load-displacement relationship curves of different types of helical piles. For the helical pile with a single plate, whether the installation effect is considered or not, the variation trends of the ultimate bearing capacity with the increasing of the embedment depth ratio are basically the same, but the ultimate bearing capacity decreases significantly when installation effect is considered. For double-plate pile, after the spacing is greater than 2D, the individual bearing model occurs, and each plate can play its bearing capacity independently. Increasing the number of plates can appropriately improve the bearing capacity, but when the failure model transitions from individual bearing model to cylindrical shear mechanism, the increase of bearing capacity is no longer obvious, and at this moment the critical spacing ratio (S/D)cr is between 1.5 and 2.0. Subsequently, a concept of “disturbance coefficient” is put forward to quantitatively evaluate the reduction of bearing capacity caused by helical pile installation. For the helical pile with a single plate, the disturbance coefficient varies from 0.5 to 0.6 when embedment depth ratio is greater than 4D, and increasing the spacing ratio will lead to an increase in disturbance coefficient ranging from 0.20 to 0.45. For multiple plates, the coefficient lies between 0.4 and 0.6.

Key words: helical piles, installation effect, uplift resistance, model test

CLC Number: 

  • TU447
[1] PENG Wen-zhe, ZHAO Ming-hua, YANG Chao-wei, ZHAO Heng, . Model test and finite beam element solution of cyclic lateral characteristics of piles in sloping ground [J]. Rock and Soil Mechanics, 2023, 44(2): 381-391.
[2] ZHOU Xiang, CAI Jing-sen, MA Wei-cheng, XIAO Hao-wen, . Influence of material composition characteristics on the deformation and failure of gravel soil slopes [J]. Rock and Soil Mechanics, 2023, 44(2): 531-540.
[3] LIU Si-hong, SHEN Chao-min, CHENG De-hu, ZHANG Cheng-bin, MAO Hang-yu, . Model test of expansive soil slope with soilbags during rainfall-insolation cycles [J]. Rock and Soil Mechanics, 2022, 43(S2): 35-42.
[4] TANG Yang, LIU Gan-bin, ZHENG Ming-fei, SHI Shi-yong, . Model test on thermal response of phase change pile in saturated silt ground [J]. Rock and Soil Mechanics, 2022, 43(S2): 282-290.
[5] ZHONG Wei, ZHANG Shuai, HE Na, . Experimental study on soil arch behind anti-slide pile based on relative deformation method [J]. Rock and Soil Mechanics, 2022, 43(S2): 315-326.
[6] LUO Wei-ping, YUAN Da-jun, JIN Da-long, LU Ping, CHEN Jian, GUO Hai-peng, . Centrifugal model test on relationship between support pressure of shield tunnel face and ground deformation in water rich sand strata [J]. Rock and Soil Mechanics, 2022, 43(S2): 345-354.
[7] SHAN Zhi-gang, GAO Shang, SUN Miao-jun, CHEN Yu-xue, LI Li-ping, CHENG Shuai, ZHOU Zong-qing, . Physical model tests and numerical simulations to determine mechanism of offshore submarine landslides under effect of sea waves [J]. Rock and Soil Mechanics, 2022, 43(S2): 541-552.
[8] LIU Bo, XU Fei, ZHAO Wei-gang, GAO Yang, . Review and prospect of model test system for tunnel engineering structure [J]. Rock and Soil Mechanics, 2022, 43(S1): 452-468.
[9] WANG Xin-bo, WANG Lu-jun, ZHU Bin, WANG Peng, YUAN Si-min, CHEN Yun-min, . Experimental study of behavior of hydrate-bearing sediments during servo depressurization [J]. Rock and Soil Mechanics, 2022, 43(9): 2360-2370.
[10] DENG Bo, YANG Ming-hui, WANG Dong-xing, FAN Jun-wei, . Failure mode and active earth pressure calculation of unsaturated soil behind rigid retaining wall [J]. Rock and Soil Mechanics, 2022, 43(9): 2371-2382.
[11] WEI Chao, ZHU Hong-hu, GAO Yu-xin, WANG Jing, ZHANG Wei, SHI Bin, . Model test study of ground collapse using distributed fiber optic sensing [J]. Rock and Soil Mechanics, 2022, 43(9): 2443-2456.
[12] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, HU Lei, . Deterioration-buckling failure mechanism of consequent bedding limestone bank slope in Three Gorges Reservoir area [J]. Rock and Soil Mechanics, 2022, 43(9): 2568-2580.
[13] LAN Jing-yan, CAI Jin-dou, WU Lian-bin, SHI Qing-qi, . Study on variation law of ground motion amplification effects along depth in tunnel site [J]. Rock and Soil Mechanics, 2022, 43(8): 2083-2091.
[14] CHAI Yuan, NIU Yong, LÜ Hai-bo, . Experimental study on vertical bearing characteristics of a single pile in cemented calcareous sand layers [J]. Rock and Soil Mechanics, 2022, 43(8): 2203-2212.
[15] FAN Hao-bo, ZHOU Ding-kun, LIU Yong, SONG Yu-xiang, ZHU Zheng-guo, ZHU Yong-quan, GAO Xin-qiang, GUO Jia-qi, . Mechanical response characteristics of lining structure of pipeline karst tunnels in water-rich areas [J]. Rock and Soil Mechanics, 2022, 43(7): 1884-1898.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .