Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (8): 2327-2336.doi: 10.16285/j.rsm.2022.1354

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Laboratory experiment study on response of vibroflotation compaction of coral sand

ZHAO Jin-qiao1, 2, DING Xuan-ming1, 2, LIU Han-long1, 2, OU Qiang1, 2, JIANG Chun-yong1, 2   

  1. 1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China
  • Received:2022-09-02 Accepted:2022-10-12 Online:2023-08-21 Published:2023-08-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41831282, 52108299, 51878103) and the Postdoctoral Science Foundation (2021M693740).

Abstract: The treatment of the hydraulic fill coral sand ground starts to attracted a lot of attentions with the development of marine island reef engineering. By using self-developed laboratory vibroflotation instruments, vibroflotation tests on of saturated coral sands ground are conducted to analyze dynamic response regularity during vibro-compaction, such as dynamic pore water pressure and horizontal earth pressure. The characteristics of settlement and relative density are also investigated. The results indicate that loose coral sands can be improved to medium density after two times of double-point vibro-compaction; meanwhile, the most obvious effect to relative density appears at the point where vibrator works, and the middle or deeper areas are better improved than the surface areas. The maximal excess pore water pressure appears at the stage of vibrator penetration. The excess pore water pressure starts to attenuate at the beginning of vibration retention. A significant descend of excess pore water pressure happens when vibrator starts to lift. The peak excess pore water pressure of the second penetration is obviously smaller than that of first penetration. The excess pore water pressure ratio contours exhibits parallel distribution during vibro-compaction. The shallow horizontal earth pressure of coral sands shows an increase with both penetration and extraction of vibrator, while the deep horizontal earth pressure presents a decrease.

Key words: vibroflotation, laboratory experiment, coral sand, relative density, pore water pressure, horizontal earth pressure

CLC Number: 

  • TU 470
[1] LI Yao, LI Jia-ping, . Multi-directional cyclic simple shear behaviour of loose sand under complex initial stress states [J]. Rock and Soil Mechanics, 2023, 44(9): 2555-2565.
[2] FU Xiang, , HUANG Ping, XIE Qiang, BAN Yu-xin, SU Han. Triaxial compression mechanical properties and multidirectional fracture mechanism of sandstone under different pore water pressures [J]. Rock and Soil Mechanics, 2023, 44(9): 2611-2618.
[3] DENG Yue-bao, ZHANG Chen-hao, WANG Xin, ZHANG Ri-hong. Consolidation theory of implantable drainage pile [J]. Rock and Soil Mechanics, 2023, 44(9): 2639-2647.
[4] YANG Zheng-tao, QIN You, WU Qi, , CHEN Guo-xing, . Influence of cyclic loading frequency on liquefaction behaviors of saturated coral sand [J]. Rock and Soil Mechanics, 2023, 44(9): 2648-2656.
[5] WANG Xiao-lei, LIU Li-teng, LIU Run, LIU Li-bo, DONG Lin, REN Hai. Shaking table test study on the influence of seismic history on liquefaction resistance of soils at different depths [J]. Rock and Soil Mechanics, 2023, 44(9): 2657-2666.
[6] SHEN Yang, MA Ying-hao, RUI Xiao-xi. Experimental study on pore water pressure characteristics and accumulated loss energy of saturated calcareous sand under wave loading [J]. Rock and Soil Mechanics, 2023, 44(8): 2195-2204.
[7] JIAN Tao, KONG Ling-wei, BAI Wei, SHU Rong-jun, . Dynamic pore pressure model for saturated loess based on dissipative energy [J]. Rock and Soil Mechanics, 2023, 44(8): 2238-2248.
[8] YANG Qi, WANG Xiao-ya, NIE Ru-song, CHEN Chen, CHEN Yuan-zheng, XU Fang, . Characteristics of the cumulative plastic deformation and pore water pressure of saturated sand under cyclic intermittent loading [J]. Rock and Soil Mechanics, 2023, 44(6): 1671-1683.
[9] QIN You, DU Xin-yu, MA Wei-jia, WU Qi, CHEN Guo-xing, . A stress-based model for the generation of excess pore water pressure in saturated coral sand subjected to various cyclic stress paths [J]. Rock and Soil Mechanics, 2023, 44(6): 1729-1738.
[10] ZHANG Ji-ru, ZHENG Yan-jun, PENG Wei-ke, WANG Lei, CHEN Jing-xin. Applicability of power-law stress-strain model for coral sand under earth fill stress path [J]. Rock and Soil Mechanics, 2023, 44(5): 1309-1318.
[11] LUO Zhao-gang, DING Xuan-ming, OU Qiang, JIANG Chun-yong, FANG Hua-qiang, . Experimental study on strength and deformation characteristics of coral sand reinforced by geogrid [J]. Rock and Soil Mechanics, 2023, 44(4): 1053-1064.
[12] PENG Yun, HU Ming-jian, A Ying, WANG Xue-qing, . Testing of coral sand thermal physical parameters and comparative analysis of prediction models [J]. Rock and Soil Mechanics, 2023, 44(3): 884-895.
[13] GUO Jing-zhuo, ZHENG Gang, ZHAO Lin-song, PAN Jun, ZHANG Zong-jun, ZHOU Qiang, CHENG Xue-song, . Experimental study of soil deformation and pore pressure caused by multi-row grouting [J]. Rock and Soil Mechanics, 2023, 44(3): 896-907.
[14] CHEN Ping-shan, LÜ Wei-qing, LIANG Xiao-cong, ZHOU Hong-xing, WANG Jing, MA Jia-jun, . Experimental study on liquefaction resistance characteristics of fine-grained coralline soils [J]. Rock and Soil Mechanics, 2023, 44(2): 337-344.
[15] HE Wen, CHEN Hao, ZHENG Chang-song, LU Bo-kai, WANG Man-man, . Experimental research on seepage failure of tailings and its monitoring using guided waves [J]. Rock and Soil Mechanics, 2023, 44(2): 415-424.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[2] CHU Xi-hua, XU Yuan-jie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. , 2009, 30(10): 2985 -2990 .
[3] YANG Kun, ZHOU Chuang-bing WANG Tong-xu. Risk analysis of dam slope under external random multi-loadings[J]. , 2009, 30(10): 3057 -3062 .
[4] LI Shao-long, ZHANG Jia-fa, ZHANG Wei, XIAO Li. Study of spatial variability and stochastic modeling of surface soil permeability[J]. , 2009, 30(10): 3168 -3172 .
[5] ZHAO Cheng-gang,CAI Guo-qing. Principle of generalized effective stress for unsaturated soils[J]. , 2009, 30(11): 3232 -3236 .
[6] KONG Wei-xue,RUI Yong-qin,DONG Bao-di. Determination of dilatancy angle for geomaterials under non-associated flow rule[J]. , 2009, 30(11): 3278 -3282 .
[7] ZHANG Wen-jie,CHEN Yun-min,QIU Zhan-hong. Laboratory and field tests on hydraulic properties of landfilled waste[J]. , 2009, 30(11): 3313 -3317 .
[8] WU Jin-wen,ZHAO Yang-sheng,WAN Zhi-jun,DONG Fu-ke,FENG Zi-jun,LI Yi. Experimental study of acoustic emission characteristics of granite thermal cracking under middle-high temperature and triaxial stress[J]. , 2009, 30(11): 3331 -3336 .
[9] WANG Wei,WANG Shui-lin,TANG Hua,ZHOU Ping-gen. Application of 3-D GIS to monitoring and forecast system of landslide hazard[J]. , 2009, 30(11): 3379 -3385 .
[10] LIU Yu-cheng,ZHUANG Yan-hua. Model for dynamic process of ground surface subsidence due to underground mining[J]. , 2009, 30(11): 3406 -3410 .