Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (9): 2555-2565.doi: 10.16285/j.rsm.2023.0432

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Multi-directional cyclic simple shear behaviour of loose sand under complex initial stress states

LI Yao1, LI Jia-ping2   

  1. 1. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China; 2. Qingdao Municipal Engineering Design Research Institute, Qingdao, Shandong 266000, China
  • Received:2023-04-06 Accepted:2023-06-28 Online:2023-09-11 Published:2023-09-02
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (51708040).

Abstract: Loose sand is highly susceptible to liquefaction, and small changes in stress state can affect its liquefaction characteristics. Based on multi-directional cyclic simple shear tests, this study conducted cyclic simple shear tests on loose sand under different magnitudes and directions of static shear stress, and complex shear paths. The cyclic simple shear characteristics of loose sand under complex initial stress states are studied. The main conclusions are drawn as follows: (1) As the static shear stress ratio increases, the peak shear stress of the specimen increases, the increment of pore water pressure in the first cycle increases, and the specimen is more prone to liquefaction. The effect of the magnitude of initial static shear stress on excess pore water pressure is more significant at the early stage of shearing. (2) With the increase of the angle between the initial static shear stress and the main direction of dynamic shear stress, the peak shear stress of the specimen in the X direction decreases, and the pore water pressure of the specimen accelerates to increase. In addition, the increment in pore water pressure in the first cycle and the last cycle increases, and the difference between the cycles increases. The specimen is more prone to sudden liquefaction. (3) The specimen with 8-shaped shear path has the largest area of stress−strain hysteresis loops, which consumes the most energy per cycle, followed by the specimen with the circular shear path, and the specimen with the straight shear path has the smallest area. Complex shear paths can induce a sudden increase in pore water pressure at the beginning of shearing, increasing the increment in pore water pressure in each cycle and making it more prone to liquefaction. (4) The sequence of factors affecting the liquefaction of loose sand is the angle between the initial static shear stress and the dynamic shear stress, the shear path, and the magnitude of the initial static shear stress.

Key words: multi-directional cyclic simple shear test, loose sand, complex initial stress, liquefaction, pore water pressure, stress path, stress reversal

CLC Number: 

  • TU411
[1] YANG Yang, SUN Rui, . Liquefaction probability criteria table based on shear wave velocity [J]. Rock and Soil Mechanics, 2023, 44(增刊): 634-644.
[2] FU Xiang, , HUANG Ping, XIE Qiang, BAN Yu-xin, SU Han. Triaxial compression mechanical properties and multidirectional fracture mechanism of sandstone under different pore water pressures [J]. Rock and Soil Mechanics, 2023, 44(9): 2611-2618.
[3] DENG Yue-bao, ZHANG Chen-hao, WANG Xin, ZHANG Ri-hong. Consolidation theory of implantable drainage pile [J]. Rock and Soil Mechanics, 2023, 44(9): 2639-2647.
[4] YANG Zheng-tao, QIN You, WU Qi, , CHEN Guo-xing, . Influence of cyclic loading frequency on liquefaction behaviors of saturated coral sand [J]. Rock and Soil Mechanics, 2023, 44(9): 2648-2656.
[5] WANG Xiao-lei, LIU Li-teng, LIU Run, LIU Li-bo, DONG Lin, REN Hai. Shaking table test study on the influence of seismic history on liquefaction resistance of soils at different depths [J]. Rock and Soil Mechanics, 2023, 44(9): 2657-2666.
[6] SHEN Yang, MA Ying-hao, RUI Xiao-xi. Experimental study on pore water pressure characteristics and accumulated loss energy of saturated calcareous sand under wave loading [J]. Rock and Soil Mechanics, 2023, 44(8): 2195-2204.
[7] JIAN Tao, KONG Ling-wei, BAI Wei, SHU Rong-jun, . Dynamic pore pressure model for saturated loess based on dissipative energy [J]. Rock and Soil Mechanics, 2023, 44(8): 2238-2248.
[8] ZHAO Jin-qiao, DING Xuan-ming, LIU Han-long, OU Qiang, JIANG Chun-yong, . Laboratory experiment study on response of vibroflotation compaction of coral sand [J]. Rock and Soil Mechanics, 2023, 44(8): 2327-2336.
[9] JIA Ke-min, XU Cheng-shun, DU Xiu-li, ZHANG Xiao-ling, SONG Ji, SU Zhuo-lin, . Mechanism of liquefaction-induced lateral spreading in liquefiable inclined sites [J]. Rock and Soil Mechanics, 2023, 44(6): 1837-1848.
[10] YANG Qi, WANG Xiao-ya, NIE Ru-song, CHEN Chen, CHEN Yuan-zheng, XU Fang, . Characteristics of the cumulative plastic deformation and pore water pressure of saturated sand under cyclic intermittent loading [J]. Rock and Soil Mechanics, 2023, 44(6): 1671-1683.
[11] QIN You, DU Xin-yu, MA Wei-jia, WU Qi, CHEN Guo-xing, . A stress-based model for the generation of excess pore water pressure in saturated coral sand subjected to various cyclic stress paths [J]. Rock and Soil Mechanics, 2023, 44(6): 1729-1738.
[12] ZHANG Ji-ru, ZHENG Yan-jun, PENG Wei-ke, WANG Lei, CHEN Jing-xin. Applicability of power-law stress-strain model for coral sand under earth fill stress path [J]. Rock and Soil Mechanics, 2023, 44(5): 1309-1318.
[13] WU Hong, YE Zhi, ZHANG Yu-ting, LIU Hua-bei, . Numerical study on seismic behavior of shield tunnel crossing saturated sandy strata with different densities [J]. Rock and Soil Mechanics, 2023, 44(4): 1204-1216.
[14] GUO Jing-zhuo, ZHENG Gang, ZHAO Lin-song, PAN Jun, ZHANG Zong-jun, ZHOU Qiang, CHENG Xue-song, . Experimental study of soil deformation and pore pressure caused by multi-row grouting [J]. Rock and Soil Mechanics, 2023, 44(3): 896-907.
[15] CHEN Ping-shan, LÜ Wei-qing, LIANG Xiao-cong, ZHOU Hong-xing, WANG Jing, MA Jia-jun, . Experimental study on liquefaction resistance characteristics of fine-grained coralline soils [J]. Rock and Soil Mechanics, 2023, 44(2): 337-344.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .