Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (4): 1204-1216.doi: 10.16285/j.rsm.2022.0741

• Numerical Analysis • Previous Articles     Next Articles

Numerical study on seismic behavior of shield tunnel crossing saturated sandy strata with different densities

WU Hong1, YE Zhi1, ZHANG Yu-ting2, LIU Hua-bei1   

  1. 1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; 2. Geotechnical Engineering Research Center, Tianjin Research Institute for Water Transport Engineering, of Ministry of Transport, Tianjin 300456, China
  • Received:2022-05-18 Accepted:2022-09-08 Online:2023-04-18 Published:2023-04-29
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51978305) and the Fundamental Research Funds for the Central Public Welfare Research Institutes (TKS20220107).

Abstract: Earthquake-induced liquefaction poses a significant threat to tunnel structures. Particularly, shield tunnel crossing sandy stratums with different liquefaction susceptibilities could suffer more severe seismic damages near the soil interface. In this paper, a three-dimensional numerical study was carried out to investigate the seismic response of a shield tunnel passing through saturated sandy strata with two different relative densities. Firstly, a practice-oriented two-surface plasticity sand model was employed to model the sandy soil and was validated by shaking table experiments on a tunnel structure embedded in liquefiable soil. Secondly, a deformable force-displacement link model for circumferential joints between each successive segmental ring was employed to model the interactions between segmental rings. The approach was validated using the results of two loading experiments on model segmental linings from the literature. Finally, the 3D numerical model was established considering various relative densities of soil, peak input accelerations, and the dip angle of the interface. The results indicate that the tunnel’s horizontal displacements due to seismic excitations are coupled with the liquefaction-induced vertical uplift displacements, and the tunnel’s deformation is not simultaneous in the two soil strata, resulting in twisting distortion of the tunnel structure. The uplifts of tunnel change rapidly and are increased by the rising of the dip angle near the soil interface. Also, the bending moments suddenly change, and the shearing/tensile displacements of joints increase remarkably, which confirms that the seismic design of shield tunnel segments near the soil interface is a critical issue.

Key words: saturated soil interface, shield tunnel, earthquake responses, deformation mode, soil liquefaction

CLC Number: 

  • TU43
[1] ZHANG Zhi-guo, YE Tong, ZHU Zheng-guo, PAN Y T, WU Zhong-teng, . Hydraulic and displacement response analysis of shield tunnel in gassy seabed under wave action [J]. Rock and Soil Mechanics, 2023, 44(6): 1557-1574.
[2] ZHONG Xiao-chun, HUANG Si-yuan, HUAI Rong-guo, ZHU Cheng, HU Yi-kang, CHEN Xu-quan, . Longitudinal uplift characteristics of segments of shield tunnels based on buoyancy of grouting [J]. Rock and Soil Mechanics, 2023, 44(6): 1615-1624.
[3] WANG Zu-xian, SHI Cheng-hua, GONG Chen-jie, CAO Cheng-yong, PENG Zhu, SUN Ying-jie, . Calculation model of longitudinal nonlinear equivalent bending stiffness of shield tunnel considering its transverse performance [J]. Rock and Soil Mechanics, 2023, 44(5): 1295-1308.
[4] LIU Yong, ZHOU Yi-sheng, SUO Xiao-ming, FAN Hao-bo, CAO Yi-ze, DU Zhi-tian, . Model test on the deformation law of shield tunnel underpassing high speed railway roadbed [J]. Rock and Soil Mechanics, 2023, 44(4): 941-951.
[5] ZHANG Zhi-wei, LIANG Rong-zhu, LI Zhong-chao, SUN Lian-wei, SHEN Wen, WU Wen-bing, . Analysis of longitudinal deformation of shield tunnel subjected to shield tail asymmetric thrust [J]. Rock and Soil Mechanics, 2023, 44(1): 88-98.
[6] LUO Wei-ping, YUAN Da-jun, JIN Da-long, LU Ping, CHEN Jian, GUO Hai-peng, . Centrifugal model test on relationship between support pressure of shield tunnel face and ground deformation in water rich sand strata [J]. Rock and Soil Mechanics, 2022, 43(S2): 345-354.
[7] CUI Guang-yao, MA Jian-fei, NING Mao-quan, TANG Zai-xing, LIU Shun-shui, TIAN Yu-hang, . Comparative analysis of construction reinforcement scheme of super large rectangular pipe jacking shield tunnel close to and under high-speed railway [J]. Rock and Soil Mechanics, 2022, 43(S2): 414-424.
[8] LI Chun-lin. Curved solid failure model and calculation method of supporting pressure for shield tunnel excavation face [J]. Rock and Soil Mechanics, 2022, 43(8): 2092-2102.
[9] WANG Zu-xian, SHI Cheng-hua, GONG Chen-jie, CAO Cheng-yong, LIU Jian-wen, PENG Zhu, . Analytical method to estimate the influence of foundation pit excavation adjacent to the station (working shaft) on the underlying shield tunnel [J]. Rock and Soil Mechanics, 2022, 43(8): 2176-2190.
[10] YANG Jian-ping, WANG Chen, HUANG Yu-cheng, QIN Chuan, CHEN Wei-zhong, . Variation law of segment strain increment of an underwater shield tunnel during normal operation [J]. Rock and Soil Mechanics, 2022, 43(8): 2253-2262.
[11] ZHANG Jian, QI Rui-yu, ZONG Jing-yao, FENG Tu-gen. Failure mechanism of shield tunnel circumferential excavation face and the influence of the dilatancy effect on the tunnel stability [J]. Rock and Soil Mechanics, 2022, 43(7): 1833-1844.
[12] ZHANG Zhi-guo, YE Tong, ZHANG Cheng-ping, PAN Y T, WU Zhong-teng, . Response analysis of sand seepage pressure around shield tunnel in sloping seabed under Stokes second order wave [J]. Rock and Soil Mechanics, 2022, 43(6): 1635-1659.
[13] ZHU Min, CHEN Xiang-sheng, ZHANG Guo-tao, PANG Xiao-chao, SU Dong, LIU Ji-qiang, . Parameter back-analysis of hardening soil model for granite residual soil and its engineering applications [J]. Rock and Soil Mechanics, 2022, 43(4): 1061-1072.
[14] JIN Da-long, YUAN Da-jun, . Face stability analysis of the slurry-type shield tunneling considering the dynamic filter cake [J]. Rock and Soil Mechanics, 2022, 43(11): 2952-2962.
[15] WANG Zu-xian, SHI Cheng-hua, LIU Jian-wen. Analytical solution of additional response of shield tunnel under asymmetric jack thrust [J]. Rock and Soil Mechanics, 2021, 42(9): 2449-2460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIAO Heng-lin, YU Tian-qing. Field experiment on earth pressure behind retaining wall in mountainous area[J]. , 2009, 30(12): 3771 -3775 .
[2] JIANG Ji-wei,XIANG Wei,TANG Hui-ming,ZENG Bin,HUANG Ling. Stability prediction of Dagouwan landslide in Dongping reservoir at limit water level[J]. , 2010, 31(3): 805 -810 .
[3] LU Zheng, YAO Hai-lin, LIU Gan-bin, LUO Xing-wen. Dynamic response of coupling thermo-hydro-mechanical foundation subjected to harmonic line loads[J]. , 2010, 31(7): 2309 -2316 .
[4] ZHAO Ming-hua,SUN Jian-bin,ZHANG Yong-jie. Settlement calculation of two-direction reinforced composite foundation based on Winkler model[J]. , 2010, 31(11): 3459 -3463 .
[5] YANG Yu-gui,LAI Yuan-ming,LI Shuang-yang,DONG Yuan-hong. Experimental study of deformation failure and energy properties of frozen silt under triaxial compression[J]. , 2010, 31(11): 3505 -3510 .
[6] CUI Hao-dong,ZHANG Jia-fa,ZHANG Wei,WANG Jin-long. Numerical analysis of seepage field for typical canal stretch on confined aquifer of Middle Route Project of South-to-North Water Transfer[J]. , 2010, 31(S2): 447 -451 .
[7] FU Wei, WANG Ren, HU Ming-jian, XIANG Yan-hong. Study of relationship between uniaxial compressive strength and electrical resistivity of frozen soil under different temperatures[J]. , 2009, 30(1): 73 -78 .
[8] SUN Fu-xue,CAI Xiao-hong,ZHU Yun-hui. Analytical solution of internal force and displacement in multi-center circular arc tunnel lining based on initial parameter method[J]. , 2009, 30(4): 1127 -1130 .
[9] LI Shou-ju, LIU Ying-xi, YU He. Numerical simulation of relationship between thermal conductivity of porous material and fractal dimension[J]. , 2009, 30(5): 1465 -1470 .
[10] HU Xin,HONG Bao-ning,DU Qiang,MENG Yun-mei. Influence of water contents on shear strength of coal-bearing soil[J]. , 2009, 30(8): 2291 -2294 .