Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (6): 1615-1624.doi: 10.16285/j.rsm.2022.1038

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Longitudinal uplift characteristics of segments of shield tunnels based on buoyancy of grouting

ZHONG Xiao-chun1, HUANG Si-yuan1, HUAI Rong-guo2, ZHU Cheng3, HU Yi-kang2, CHEN Xu-quan2   

  1. 1. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. China Railway No.5 Engineering Group Co., Ltd., Changsha, Hunan 410117, China; 3. CCCC Second Highway Consultants Co., Ltd., Wuhan, Hubei 430058, China
  • Received:2022-07-05 Accepted:2022-09-15 Online:2023-06-14 Published:2023-06-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(52178387, 51678217).

Abstract: This study aims to investigate the problem that segment of shield tail is easy to float up in surrounding rock formation. Based on the self-developed gravity testing system of grouting, the nonlinear variation law of grouting buoyancy is obtained, and based on the equivalent continuous beam theory, a refined longitudinal uplift model of shield tail segment is established. The model can comprehensively consider the time-varying of grouting, the nonlinear distribution characteristics of grouting buoyancy and the cumulative effect of construction steps. The reliability of the model is verified by using the actual floating test results of shield construction in an underground pipe gallery in Guangzhou. The results show that with the increase of the pressure difference of the grouting and the permeability of the strata, the dissipation speed of the grouting buoyancy presents an increasing trend, and the uplift values of shield tail segment exhibits a decreasing trend. When the shield tunnels are in strongly weathered pebbly sandstone formation, the uplift characteristic curve follows the law of first increasing and then decreasing, and finally floating stably. Under an action of 20 kPa differential pressure, the maximum uplift value of segment is 151.74 mm, the value of which is 39.2 m away from the shield tail, and finally floating stably near 70 m away from the shield tail. At this time, the uplift value is 145.2 mm. The longitudinal model of segment upward movement further reveals the influence mechanism of grouting consolidation law on its uplift characteristics. The model has good reliability compared with the measured results. The results can be used to predict the uplift deformation of segment induced by grouting buoyancy and provide a theoretical basis for similar projects.

Key words: shield tunnel, segment uplift, elastic foundation beam, synchronous grouting, foundation coefficient

CLC Number: 

  • U455
[1] ZHANG Zhi-guo, YE Tong, ZHU Zheng-guo, PAN Y T, WU Zhong-teng, . Hydraulic and displacement response analysis of shield tunnel in gassy seabed under wave action [J]. Rock and Soil Mechanics, 2023, 44(6): 1557-1574.
[2] WANG Zu-xian, SHI Cheng-hua, GONG Chen-jie, CAO Cheng-yong, PENG Zhu, SUN Ying-jie, . Calculation model of longitudinal nonlinear equivalent bending stiffness of shield tunnel considering its transverse performance [J]. Rock and Soil Mechanics, 2023, 44(5): 1295-1308.
[3] SONG Yang, WANG Hong-shuai, LI Ang, WANG Xin, XIAO Zuo-ming, YUAN Qiang, . Permeation-compaction diffusion mechanism of shield tail synchronous grouting slurry in water-rich fine sand layer [J]. Rock and Soil Mechanics, 2023, 44(5): 1319-1329.
[4] LIU Yong, ZHOU Yi-sheng, SUO Xiao-ming, FAN Hao-bo, CAO Yi-ze, DU Zhi-tian, . Model test on the deformation law of shield tunnel underpassing high speed railway roadbed [J]. Rock and Soil Mechanics, 2023, 44(4): 941-951.
[5] WU Hong, YE Zhi, ZHANG Yu-ting, LIU Hua-bei, . Numerical study on seismic behavior of shield tunnel crossing saturated sandy strata with different densities [J]. Rock and Soil Mechanics, 2023, 44(4): 1204-1216.
[6] ZHANG Zhi-wei, LIANG Rong-zhu, LI Zhong-chao, SUN Lian-wei, SHEN Wen, WU Wen-bing, . Analysis of longitudinal deformation of shield tunnel subjected to shield tail asymmetric thrust [J]. Rock and Soil Mechanics, 2023, 44(1): 88-98.
[7] LUO Wei-ping, YUAN Da-jun, JIN Da-long, LU Ping, CHEN Jian, GUO Hai-peng, . Centrifugal model test on relationship between support pressure of shield tunnel face and ground deformation in water rich sand strata [J]. Rock and Soil Mechanics, 2022, 43(S2): 345-354.
[8] CUI Guang-yao, MA Jian-fei, NING Mao-quan, TANG Zai-xing, LIU Shun-shui, TIAN Yu-hang, . Comparative analysis of construction reinforcement scheme of super large rectangular pipe jacking shield tunnel close to and under high-speed railway [J]. Rock and Soil Mechanics, 2022, 43(S2): 414-424.
[9] LI Chun-lin. Curved solid failure model and calculation method of supporting pressure for shield tunnel excavation face [J]. Rock and Soil Mechanics, 2022, 43(8): 2092-2102.
[10] WANG Zu-xian, SHI Cheng-hua, GONG Chen-jie, CAO Cheng-yong, LIU Jian-wen, PENG Zhu, . Analytical method to estimate the influence of foundation pit excavation adjacent to the station (working shaft) on the underlying shield tunnel [J]. Rock and Soil Mechanics, 2022, 43(8): 2176-2190.
[11] YANG Jian-ping, WANG Chen, HUANG Yu-cheng, QIN Chuan, CHEN Wei-zhong, . Variation law of segment strain increment of an underwater shield tunnel during normal operation [J]. Rock and Soil Mechanics, 2022, 43(8): 2253-2262.
[12] ZHANG Jian, QI Rui-yu, ZONG Jing-yao, FENG Tu-gen. Failure mechanism of shield tunnel circumferential excavation face and the influence of the dilatancy effect on the tunnel stability [J]. Rock and Soil Mechanics, 2022, 43(7): 1833-1844.
[13] ZHANG Zhi-guo, YE Tong, ZHANG Cheng-ping, PAN Y T, WU Zhong-teng, . Response analysis of sand seepage pressure around shield tunnel in sloping seabed under Stokes second order wave [J]. Rock and Soil Mechanics, 2022, 43(6): 1635-1659.
[14] ZHU Min, CHEN Xiang-sheng, ZHANG Guo-tao, PANG Xiao-chao, SU Dong, LIU Ji-qiang, . Parameter back-analysis of hardening soil model for granite residual soil and its engineering applications [J]. Rock and Soil Mechanics, 2022, 43(4): 1061-1072.
[15] JIN Da-long, YUAN Da-jun, . Face stability analysis of the slurry-type shield tunneling considering the dynamic filter cake [J]. Rock and Soil Mechanics, 2022, 43(11): 2952-2962.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .