Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (8): 2297-2307.doi: 10.16285/j.rsm.2022.1373

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Meso-mechanism of rolling dynamic compaction to reinforce loose landslide dam material

LI Wen-wei1, ZHAN Xin-jie2, 3, WANG Bao-tian1, ZHU Qun-feng2, XU Xiao-long2, ZUO Jin-yu1, WANG Jia-hui1   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. Geotechnical Engineering Department, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu 210029, China; 3. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu 210029, China
  • Received:2022-09-05 Accepted:2023-03-15 Online:2023-08-21 Published:2023-08-21
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2018YFC1508504) and the Special Fund for Basic Scientific Research Business of Central Public Research Institutes of Nanjing Hydraulic Research Institute (Y323002).

Abstract: In order to systematically study the densification mechanism of landslide dam material during rolling dynamic compaction, based on the self-designed model device for rolling dynamic compaction and particle image velocimetry technology, the effects of different construction parameters on the deformation and particle displacement of the landslide dam material foundation were studied. The test results showed that the rolling dynamic compaction process is a combination of impact and rolling. Due to the horizontal impact, the deformation of the foundation under the impact point is asymmetric. The combination of "high speed and low-weight roller" construction parameters would improve the impact effect, and weaken the compaction effect, resulting in poor surface smoothness of the foundation. The maximum displacement during the reinforcement occurred when the arc surface of the triangular impact wheel was in contact with the soil. Afterwards, due to the rise of the center of the impact wheel, the foundation appeared partially elastical rebound. The increase of roller speed promotes the impact energy transfer to the deeper depth, but the improvement width is limited. The increase of roller weight promotes energy transfer to both horizontal sides, but the improvement depth is limited. For the Yigong landslide dam material foundation in the model test, the optimal towing speed for the rolling dynamic compaction is about 0.75 m/s. The results could provide a theoretical basis for the reinforcement of impact rolling of the shallow layer of landslide dam foundation.

Key words: landslide dam material, rolling dynamic compaction, meso-mechanism, particle motion, displacement

CLC Number: 

  • TV 223.2
[1] QI Tian, KONG Jian-jie, LIU Fei-yu. Effect of cyclic shear on interface characteristics of geogrid-soil-gravel mixture [J]. Rock and Soil Mechanics, 2023, 44(9): 2593-2602.
[2] ZHAO Yan, YANG Liu, XI Ru-ru, GENG Zhen-kun, ZHANG Qian, MA Xiong-de, . CO2-H2O two-phase displacement characteristics of low permeability core using nuclear magnetic resonance and magnetic resonance imaging techniques [J]. Rock and Soil Mechanics, 2023, 44(6): 1636-1644.
[3] GAO Yan, YU Jun-yuan, CHEN Qing, SHI Tian-gen, . Particle motion characteristics of dense sand during creep under lateral confinement [J]. Rock and Soil Mechanics, 2023, 44(5): 1385-1394.
[4] LI Dong-dong, SHENG Qian, XIAO Ming, WANG Xiao-mao, . Meso-mechanism of surrounding rock local damage of underground powerhouse cavern based on improved particle flow acoustic emission sheet [J]. Rock and Soil Mechanics, 2022, 43(S2): 117-129.
[5] ZHANG Zhen-kun, ZHANG Dong-mei, LI Jiang, WU Yi-ping, . LSTM-MH-SA landslide displacement prediction model based on multi-head self-attention mechanism [J]. Rock and Soil Mechanics, 2022, 43(S2): 477-486.
[6] SUI Bo-dong, . Estimation of soil displacement during installing a vertical jet grouting column [J]. Rock and Soil Mechanics, 2022, 43(S1): 513-520.
[7] JIANG Yu-hang, WANG Wei, ZOU Li-fang, WANG Ru-bin, LIU Shi-fan, DUAN Xue-lei, . Research on dynamic prediction model of landslide displacement based on particle swarm optimization-variational mode decomposition, nonlinear autoregressive neural network with exogenous inputs and gated recurrent unit [J]. Rock and Soil Mechanics, 2022, 43(S1): 601-612.
[8] RUAN Sheng, JIN Ya-bing, XU Jing-xin, SUN Yong, . A calculation method of single-layer opposite bracing foundation pit under asymmetric load [J]. Rock and Soil Mechanics, 2022, 43(8): 2296-2304.
[9] TANG Zheng, WANG Hong-xin, SUN De-an, ZHANG Xiao, . Surface displacement during pipe roof construction of pipe-jacking group with large section [J]. Rock and Soil Mechanics, 2022, 43(7): 1933-1941.
[10] FERRO Edgar, OSS Andrea, SIMEONI Lucia, . Seismic analysis of cantilever earth retaining walls embedded in dry sand by simplified approaches and finite element method [J]. Rock and Soil Mechanics, 2022, 43(6): 1617-1634.
[11] CHAI Hua-you, KE Wen-hui, CHAI Yang-fei, ZHU Hong-xi, WANG Xian-Da, LIU Huan, . Analysis of spectral changes of the surface wave-field caused by underground shallow heterogeneities [J]. Rock and Soil Mechanics, 2022, 43(6): 1683-1693.
[12] ZHANG Wen-gang, GU Xin, LIU Han-long, ZHANG Qing, WANG Lin, WANG Lu-qi, . Probabilistic back analysis of soil parameters and displacement prediction of unsaturated slopes using Bayesian updating [J]. Rock and Soil Mechanics, 2022, 43(4): 1112-1122.
[13] WANG Jia-quan, QI Hang-xiang, LIN Zhi-nan, TANG Yi, . Pull-out test on geosynthetic reinforced sand based on digital image analysis [J]. Rock and Soil Mechanics, 2022, 43(12): 3259-3269.
[14] GUO Ju-kun, WANG Rui, KOU Hai-lei, WEI Dao-kai, BIAN Gui-jian, LEI Sheng-you, . Experimental study on movement behavior of calcareous sand particles based on three-dimensional digital image correlation technology [J]. Rock and Soil Mechanics, 2022, 43(10): 2785-2798.
[15] XU Kun-peng, JING Li-ping, CHENG Xin-jun, LIANG Hai-an, BIN Jia, . Feasibility study of pushover test of underground structure based on boundary displacement method [J]. Rock and Soil Mechanics, 2022, 43(1): 127-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .