Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (9): 2744-2756.doi: 10.16285/j.rsm.2022.1602

• Numerical Analysis • Previous Articles     Next Articles

A novel multiphysics modelling approach for grout loss analysis of backfill grouting in highly permeable soils during TBM tunnelling

LIU Ying-jing1, YANG Jie2, 3, 4, 5, ZHU Han-hua1, YIN Zhen-Yu5   

  1. 1. Zhongtian Construction Group Co., Ltd., Hangzhou, Zhejiang 310002, China; 2. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; 3. Underground Polis Academy, Shenzhen University, Shenzhen, Guangdong 518060, China; 4. Shenzhen Key Laboratory of Green, Efficient and Intelligent Construction of Underground Metro Station, Shenzhen University, Shenzhen, Guangdong 518060, China; 5. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
  • Received:2022-10-15 Accepted:2022-12-11 Online:2023-09-11 Published:2023-09-02
  • Supported by:
    This research was supported by the Council Project (RGC) of Hong Kong Special Administrative Region Government (HKSARG) of China (15217220).

Abstract: In order to meet the requirements of refined analysis, a novel hydro-mechanical coupled multi-physical modelling approach is developed to qualitatively evaluate the grout loss in the soils and predict the ground movement induced by tunnelling and backfill grouting. The process of grout transport is described by a group of non-linear transient partial differential equations based on the mechanics of the continuous medium. The blockage of grout in the soil pore space and the resulting changes in the permeability of the soil are considered by introducing the mass exchange term into the mass equilibrium equation. The hydro-mechanical coupling process is further considered by incorporating the momentum balance of the mixture system. Then, through the secondary development of ABAQUS, the governing equations are solved by defining a new plane strain element of 7-degree of freedom, making it possible to analyze engineering-scale initial boundary value problems of grouting. After that, the excavation and grouting process of a typical shield tunnel has been modelled as an example. The results demonstrate that the proposed novel multiphysics modelling approach is able to describe the spatial and temporal changes in grout pressure, ground settlement and the grout penetration range during and after grouting. It is also found that when the permeability coefficient of the soil is greater than 1.0×10−6 m/s, the grout loss due to grout penetration needs to be considered; meanwhile, the grout blockage in the soil pore space will lead to a reduction in soil porosity and permeability, thus further reducing grout loss, but the ground deformation is barely affected. Therefore, in engineering practice, grout blockage may not be considered in order to analyze the maximum grout loss and ground deformation.

Key words: TBM tunnelling, backfill grouting, grout loss, finite element method, highly permeable soil

CLC Number: 

  • O242.2
[1] ZHU Bin, PEI Hua-fu, YANG Qing, LU Meng-meng, WANG Tao, . Probabilistic analysis of wave-induced seabed response based on stochastic finite element method [J]. Rock and Soil Mechanics, 2023, 44(5): 1545-1556.
[2] WANG Rui, HU Zhi-ping, PENG Jian-bing, WANG Qi-yao, . Simulation of dynamic response of railway subgrade using 2.5D finite element method based on reduced 2D hermite interpolation [J]. Rock and Soil Mechanics, 2023, 44(3): 908-915.
[3] YI Ming-xing, ZHU Chang-qi, WANG Tian-min, LIU Hai-feng, MA Cheng-hao, WANG Xing, ZHANG Po-yu, QU Ru, . In-situ experimental study on spudcan penetration depth of jack-up platform in a site in Qidong city [J]. Rock and Soil Mechanics, 2022, 43(S2): 487-496.
[4] LI Yan-peng, LI Zhi-yuan, HU Zhi-qiang, LIN Gao, . A modified scaled boundary finite element method for scattering analysis of canyon-underground cavity system in horizontally layered site [J]. Rock and Soil Mechanics, 2022, 43(S2): 553-562.
[5] LIU Ying-jing, YANG Jie, YIN Zhen-yu, . Numerical analysis of the impact of internal erosion on underground structures: application to tunnel leakage [J]. Rock and Soil Mechanics, 2022, 43(5): 1383-1390.
[6] ZHU Wen-bo, DAI Guo-liang, WANG Bo-chen, GONG Wei-ming, WANG Hai-bo, ZHANG Yu, . Unloading creep of soft clay and long-term uplift bearing characteristics of suction caisson foundation [J]. Rock and Soil Mechanics, 2022, 43(3): 669-678.
[7] ZHAO Hai-peng, LI Xue-you, WAN Jian-hong, ZHENG Xiang-zhi, LIU Si-wei, . Analysis of laterally-loaded piles embedded in multi-layered soils using efficient finite-element method [J]. Rock and Soil Mechanics, 2021, 42(7): 1995-2003.
[8] WEI Kuang-min, CHEN Sheng-shui, MA Hong-yu, LI Guo-ying, MI Zhan-kuan, . A necessary improvement of the viscoelastic method for calculating the dynamic behaviors of the concrete faced rockfill dams [J]. Rock and Soil Mechanics, 2021, 42(12): 3475-3484.
[9] CI Hui-ling, BAI Bing, LEI Hong-wu, CUI Yin-xiang, . A high-precision scheme for field variables in finite element method [J]. Rock and Soil Mechanics, 2021, 42(11): 3137-3146.
[10] SONG Yi-min, LING Xiao-kang, ZHANG Jing-zong, ZHU Chen-li, REN He, YUAN De-shun. Inversion of mechanical parameters of geomaterials based on DSCM-FEM [J]. Rock and Soil Mechanics, 2021, 42(10): 2855-2864.
[11] DAI Xuan, GUO Wang, CHENG Xue-song, HUO Hai-feng, LIU Guo-guang, . Field measurement and numerical analysis for evaluating longitudinal settlement induced by shield tunneling parallel to building [J]. Rock and Soil Mechanics, 2021, 42(1): 233-244.
[12] WANG Xiang-nan, HAO Qing-shuo, YU Jia-lin, YU Yu-zhen, LÜ He, . Three-dimensional simulation of the separation of dam panel based on extended finite element method [J]. Rock and Soil Mechanics, 2020, 41(S1): 329-336.
[13] LI Jia-long, LI Gang, YU Long. Inelasticity-separated plane-strain element model and its application to Drucker-Prager model [J]. Rock and Soil Mechanics, 2020, 41(5): 1492-1501.
[14] XUE Yang, WU Yi-ping, MIAO Fa-sheng, LI Lin-wei, LIAO Kang, ZHANG Long-fei. Seepage and deformation analysis of Baishuihe landslide considering spatial variability of saturated hydraulic conductivity under reservoir water level fluctuation [J]. Rock and Soil Mechanics, 2020, 41(5): 1709-1720.
[15] JIANG Nan, HUANG Lin, FENG Jun, ZHANG Sheng-liang, WANG Duo, . Research on design and calculation method of tunnel-type anchorage of railway suspension bridge [J]. Rock and Soil Mechanics, 2020, 41(3): 999-1009.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .