Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (1): 267-283.doi: 10.16285/j.rsm.2023.0053

• Numerical Analysis • Previous Articles     Next Articles

Influence of soil relative density on suffusion of gap-graded soil based on coupled computational fluid dynamics-discrete element method

ZHANG Pei-yun1, 2, MU Lin-long1, 2, HUANG Mao-song1, 2   

  1. 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092
  • Received:2023-01-14 Accepted:2023-04-28 Online:2024-01-10 Published:2024-01-17
  • Supported by:
    This work was supported by the National Key R&D Program of China (2021YFB2600700) and the Natural Science Foundation of Shanghai (22ZR1464600).

Abstract: The geometric characteristics of soil (gap ratio, fines content, relative density, etc.) not only affect the internal stability of soil but also have an important influence on suffusion development. Based on the coupled method of discrete element method (DEM) and computational fluid dynamics (CFD), a three-dimensional computation model of suffusion for internally unstable soil is established, the coupled effects of fines contents and relative densities on the suffusion are investigated, and the mesoscopic variables including soil constriction size distribution (CSD), coordination number and internal force transfer mechanism are analyzed to reveal the microscopic mechanism of the coupled influence from fines content and relative density. The results show that the increase in relative density decreases the erosion mass ratio, which is also highly related to fines content; the higher the fines content, the more obvious the effect of relative density. The specimen after erosion can be divided into “upstream erosion zone”, “central stable zone” and “downstream erosion zone”. The increment of soil permeability during suffusion decreases with increasing relative density, while it increases with increasing fines contents. The influence of relative density on the suffusion process can be attributed to three aspects: differences in flow rates under the same hydraulic gradient, variations in the distribution of internal pore sizes, and variations in the contribution of fine particles to stress transmission within the soil. The results deepen the understanding of the influence of soil geometric characteristics on suffusion processes and provide a reference for the establishment of macroscopic erosion constitutive relationship.

Key words: suffusion, CFD-DEM, relative density, fines content, stress transmission mechanism

CLC Number: 

  • TU 46+2
[1] WANG Gang, DENG Ze-zhi, JIN Wei, ZHANG Jian-min, . Staggered finite element and finite volume method for suffusion simulation based on local conservation [J]. Rock and Soil Mechanics, 2024, 45(3): 917-926.
[2] ZHOU Chuang, QIAN Jian-gu , YIN Zhen-yu, . Computational fluid dynamics-discrete element fluidsolid coupling analysis on suffusion in anisotropic sandy soils [J]. Rock and Soil Mechanics, 2024, 45(1): 302-312.
[3] QU Ru, ZHU Chang-qi, LIU Hai-feng, WANG Tian-min, MA Cheng-hao, WANG Xing, . A comparative study of methods for determining boundary dry density of coral sand [J]. Rock and Soil Mechanics, 2023, 44(S1): 461-475.
[4] ZHAO Jin-qiao, DING Xuan-ming, LIU Han-long, OU Qiang, JIANG Chun-yong, . Laboratory experiment study on response of vibroflotation compaction of coral sand [J]. Rock and Soil Mechanics, 2023, 44(8): 2327-2336.
[5] QIN You, DU Xin-yu, MA Wei-jia, WU Qi, CHEN Guo-xing, . A stress-based model for the generation of excess pore water pressure in saturated coral sand subjected to various cyclic stress paths [J]. Rock and Soil Mechanics, 2023, 44(6): 1729-1738.
[6] ZHANG Yan-jie, HE Meng, SONG Meng, CAO Li, ZHAO Hai-tao, LI Mei. Study on mechanical properties of water-rich sandy pebble soil [J]. Rock and Soil Mechanics, 2023, 44(6): 1739-1747.
[7] DENG Ze-zhi, WANG Gang, JIN Wei. A constitutive model for suffusion considering the hydraulic fluctuation effect [J]. Rock and Soil Mechanics, 2023, 44(10): 2921-2928.
[8] LI Shi-bo, DAI Jun-fang, WU Jiang-wei, XIAO Le-le, . Minimum void ratio distribution and model verification considering influence of grain size fraction [J]. Rock and Soil Mechanics, 2022, 43(S2): 193-204.
[9] LUO Yu-long, ZHANG Xing-jie, ZHANG Hai-bin, SHENG Jin-chang, ZHAN Mei-li, WANG Hui-min, HE Shu-yuan. Review of suffusion in deep alluvium foundation [J]. Rock and Soil Mechanics, 2022, 43(11): 3094-3106.
[10] NIAN Ting-kai, ZHANG Fang, ZHENG De-feng, LI Dong-yang, SHEN Yue-qiang, LEI De-yu, . Numerical simulation on the movement behavior of viscous submarine landslide based on coupled computational fluid dynamics-discrete element method [J]. Rock and Soil Mechanics, 2022, 43(11): 3174-3184.
[11] ZHU Sheng, LU Zhi-shi, LIU Chun, WANG Jing, . Field vibration compaction test of rockfill and its application [J]. Rock and Soil Mechanics, 2021, 42(9): 2569-2577.
[12] LIU Kang, CHEN Guo-xing, WU Qi, MA Wei-jia, QIN You, . Effects of cyclic loading directions on liquefaction characteristics of saturated coral sand [J]. Rock and Soil Mechanics, 2021, 42(7): 1951-1960.
[13] LI Wei-yi, QIAN Jian-gu, YIN Zhen-yu, ZHOU Chuang, . Simulation of seepage erosion in gap graded sand soil using CFD-DEM [J]. Rock and Soil Mechanics, 2021, 42(11): 3191-3201.
[14] WANG Ming-nian, JIANG Yong-tao, YU Li, DONG Yu-cang, DUAN Ru-yu, . Analytical solution of startup critical hydraulic gradient of fine particles migration in sandy soil [J]. Rock and Soil Mechanics, 2020, 41(8): 2515-2524.
[15] SONG Yang, LI Ang, WANG Wei-yi, DU Chun-sheng, ZHANG Duo, FU Xing-xing, . Research and application of mud proportioning optimization of slurry balance shield in mudstone and gravel composite stratum [J]. Rock and Soil Mechanics, 2020, 41(12): 4054-4062.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[3] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[4] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[5] HUANG Run-qiu, XU De-min. Volume change method for testing rock or rock mass permeability[J]. , 2009, 30(10): 2961 -2964 .
[6] LI Lei, ZHU Wei, LIN Cheng, T. OHKI. Study of wet and dry properties of solidified sludge[J]. , 2009, 30(10): 3001 -3004 .
[7] GUO Jun-hui, CHEN Wei-guo, ZHANG Bin. Research on creep property of geogrids at a low temperature[J]. , 2009, 30(10): 3009 -3012 .
[8] WU Qiong, TANG Hui-ming, WANG Liang-qing, LIN Zhi-hong. Analytic solutions for phreatic line in reservoir slope with inclined impervious bed under rainfall and reservoir water level fluctuation[J]. , 2009, 30(10): 3025 -3031 .
[9] KANG Hou-rong, LEI Ming-tang, ZHANG Xie-dong, ZHAO Jie-hua. Karst environment zoning for highway engineering of Guizhou Province[J]. , 2009, 30(10): 3032 -3036 .
[10] YANG Kun, ZHOU Chuang-bing WANG Tong-xu. Risk analysis of dam slope under external random multi-loadings[J]. , 2009, 30(10): 3057 -3062 .