Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (3): 917-926.doi: 10.16285/j.rsm.2023.0358

• Numerical Analysis • Previous Articles     Next Articles

Staggered finite element and finite volume method for suffusion simulation based on local conservation

WANG Gang1, 2, DENG Ze-zhi2, JIN Wei3, ZHANG Jian-min4   

  1. 1. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China; 2. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 3. Chengdu Engineering Corporation Limited, Power China, Chengdu, Sichuan 610072, China; 4. School of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2023-03-22 Accepted:2023-07-12 Online:2024-03-11 Published:2024-03-20
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52079012) and the Natural Science Foundation of Chongqing (cstc2021 jcyj-msxmX0598).

Abstract: Simulating suffusion involves computing both the seepage flow of pore water in soil and the transport of fine particles with pore water flow. Since the conventional finite element method (FEM) exhibits instability when used to solve the pure transport equations, a staggered method that employs FEM to solve the seepage equation and the finite volume method (FVM) for the particle transport equation is proposed. As conventional FEM cannot provide a locally conservative velocity field that satisfies the input requirement of FVM, an algorithm, based on the global re-balance of the element residual fluxes, is employed to correct the flow velocity at element boundaries. With this algorithm, the local conservation of the flow velocity computed by FEM at the element boundary is achieved. This enables FVM to solve the particle transport equation on the same FEM mesh, facilitating the convenient integration of FVM with existing FEM codes. Case studies demonstrate that the proposed local conservation algorithm and the staggered method exhibit high computational efficiency and acceptable accuracy, offering a straightforward and practical approach to simulating suffusion problems.

Key words: suffusion, seepage, finite element method, finite volume method, local conservation

CLC Number: 

  • O243
[1] WANG Pei-tao, HUANG Hao, ZHANG Bo, WANG Lu-jun, YANG Yi, . Characterization of rough fracture model and the seepage characteristics based on 3D printing technology [J]. Rock and Soil Mechanics, 2024, 45(3): 725-736.
[2] ZHANG Xu, SHENG Jian-long, YE Zu-yang, ZHOU Xin, . Experimental and numerical analysis of steady seepage in fractured network with free surface [J]. Rock and Soil Mechanics, 2024, 45(3): 878-884.
[3] MAO Jia, YU Jian-kun, SHAO Lin-yu, ZHAO Lan-hao. Discrete element method based on three dimensional deformable spheropolyhedra [J]. Rock and Soil Mechanics, 2024, 45(3): 908-916.
[4] ZHANG Pei-sen, XU Da-qiang, YAN Wei, ZHANG Xiao-le, DONG Yu-hang, ZHAO Ming, . Influence of unloading paths on sandstone damage characteristics and energy evolution law under stress-seepage coupling [J]. Rock and Soil Mechanics, 2024, 45(2): 325-339.
[5] ZHU Yin-bin, LI Chang-dong, ZHOU Jia-qing, XIANG Lin-yu, JIANG Xi-hui, ZHU Wen-yu, . Influence of permeable matrix on non-Darcian flow in single rough-walled fracture [J]. Rock and Soil Mechanics, 2024, 45(2): 601-611.
[6] ZHANG Dan, QIU Zi-yuan, JIN Wei, ZHANG Zi-hang, LUO Yu-long, . Scale method for coarse soil seepage and seepage stability test [J]. Rock and Soil Mechanics, 2024, 45(1): 164-172.
[7] ZHANG Yu-guo, YANG Wen-bing, ZHAO Ya-chun, WANG Chuang, ZHAO Ya-min. Theoretical study on consolidation of composite foundation with composite piles considering spatiotemporal effect of stress under bidirectional seepage [J]. Rock and Soil Mechanics, 2024, 45(1): 184-196.
[8] ZHANG Pei-yun, MU Lin-long, HUANG Mao-song, . Influence of soil relative density on suffusion of gap-graded soil based on coupled computational fluid dynamics-discrete element method [J]. Rock and Soil Mechanics, 2024, 45(1): 267-283.
[9] WANG Rui, HU Zhi-ping. Current situation and prospects of 2.5D finite element method for the analysis of dynamic response of railway subgrade [J]. Rock and Soil Mechanics, 2024, 45(1): 284-301.
[10] QU Xiao-lei, ZHANG Yun-kai, CHEN You-ran, CHEN You-yang, QI Cheng-zhi, . Stability analysis of fractured rock slope based on seepage-deformation coupling model using numerical manifold method [J]. Rock and Soil Mechanics, 2024, 45(1): 313-324.
[11] JIAO Wei-guo , TU Bin, ZHANG Song, HE Ming-wei, LIN Chang-song, LIU Zhen-nan, . Anti-seepage performance verification and analysis of high-risk permeable meteorological period of capillary barrier cover in Northwest non humid area [J]. Rock and Soil Mechanics, 2023, 44(S1): 539-547.
[12] LIU Xin, SHEN Yu-peng, LIU Zhi-jian, WANG Bing-lu, LIU Yue, HAN Yun-xi. Model test on the influence of groundwater seepage velocity on formation of frozen wall in subway cross passage [J]. Rock and Soil Mechanics, 2023, 44(9): 2667-2678.
[13] LIU Ying-jing, YANG Jie, ZHU Han-hua, YIN Zhen-Yu. A novel multiphysics modelling approach for grout loss analysis of backfill grouting in highly permeable soils during TBM tunnelling [J]. Rock and Soil Mechanics, 2023, 44(9): 2744-2756.
[14] YU Jun, LI Dong-kai, HE Zhen, ZHANG Zhi-zhong. Analytical solution of anisotropic seepage in dam foundation with anti-seepage walls at both ends [J]. Rock and Soil Mechanics, 2023, 44(8): 2381-2388.
[15] YIN Xin-sheng, SHU Ying, LIANG Lu-ju, ZHANG Shi-min, . Stability analysis of shield excavation surface in saturated silt strata considering seepage [J]. Rock and Soil Mechanics, 2023, 44(7): 2005-2016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[3] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[4] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[5] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[6] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[7] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[8] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[9] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[10] LU Zheng, YAO Hai-lin, LUO Xing-wen, HU Meng-ling. 3D dynamic responses of layered ground under vehicle loads[J]. , 2009, 30(10): 2965 -2970 .