Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (1): 68-76.doi: 10.16285/j.rsm.2023.0072

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Model test study of key factors of deep soil mixing mechanism using contra-rotational shear method

GE Chun-wei1, 2, LIU Zhong1, 2, 3, YU Tao-xi1, 2, LAN Wei1, 2, YANG Ning-ye1, 2, ZHAO Meng-ya1, 2   

  1. 1. Zhejiang Kunde Innovate Geotechnical Engineering Co., Ltd., Ningbo, Zhejiang 315100, China; 2. Kunde Research Institute of Intelligent Geotechnical Technology, Ningbo, Zhejiang 315100, China; 3. Central Research Institute of Building and Construction, MCC Group, Beijing 100088, China
  • Received:2023-01-19 Accepted:2023-03-23 Online:2024-01-10 Published:2024-01-10
  • Supported by:
    This work was supported by the Key R&D Project of Ningbo Hi-tech. Industrial Development Zone (2023CX050004).

Abstract:

Small scale model test was conducted to investigate the technology factors related to contra-rotational shear deep soil mixing (CS-DSM) method, the effects of these factors, such as cement content, blade rotation number T, mixing energy E, rotation speed ratio of internal to external rod RN on the uniformity and unconfined compression strength (UCS) of the mixing pile were explored. The results show that the shearing motions of contra-rotational drilling tool can reduce excessive surface spoil and prevent entrained rotation phenomenon effectively, thereby greatly improve utilization of the binder material. The results of 18 model tests also reveal the inherent connection between T-E-UCS, and the internal relationship between machine operation parameters, mixing energy and strength of the piles. Construction parameters can be determined to ensure the target design strength by the provided calculation method. There is a peak value in the UCS-RN curve, an optimal range of RN = 1.8−2.2 is recommended for achieving peak strength of piles in engineering application. The presented technical basis has set the cornerstone for the construction process control and quality assurance as well as quality control of CS-DSM method.

Key words: technique of contra-rotational shear deep soil mixing, blade rotation number, mixing energy, rotation speed ratio of internal to external rod, CS-DSM method

CLC Number: 

  • TU473
[1] JIANG Ji-ze, WANG Cheng-long, HUANG Yu-bin, ZHAO Hua, CHEN Zhi-xiong, . Deformation characteristics for single energy pile under combined loads in vertical and horizontal directions [J]. Rock and Soil Mechanics, 2024, 45(3): 788-796.
[2] LI Shao-yi. Analysis of the dynamic impedance of group piles foundation in unsaturated ground using BEM+FEM [J]. Rock and Soil Mechanics, 2024, 45(3): 895-907.
[3] LING Zao, TANG Meng-xiong, HU He-song, LIU Chun-lin, LI Bo, SU Ding-li, . Bearing capacity of pile toe of non-displacement rock-socketed PHC pipe piles [J]. Rock and Soil Mechanics, 2024, 45(1): 97-107.
[4] LEI Yong, CHEN Yu-si, TAN Hao, LI Peng-jia, LIU Yun-si, YU Yi-lin, . Calculation method of ultimate bearing capacity for rock layer of pile tip of bridge pile groups with underground karst cave [J]. Rock and Soil Mechanics, 2023, 44(12): 3339-3348.
[5] ZHU Rui, ZHOU Feng, CHEN Ting-zhu, DENG Ya-guang, . Soil squeezing effect and bearing mechanism of strength composite pile [J]. Rock and Soil Mechanics, 2023, 44(12): 3577-3586.
[6] ZHANG Zheng-zhe, JIA Ke-min, XU Cheng-shun, PAN Ru-jiang. Difference analysis of seismic responses of inclined liquefaction site-pile-structure system under near-field pulsed and non-pulsed ground motions [J]. Rock and Soil Mechanics, 2023, 44(12): 3629-3638.
[7] DU Yue-ming, KONG De-qiong, WANG Si-liu, ZHU Bin, . Fatigue analysis of jacket foundations for offshore wind turbines [J]. Rock and Soil Mechanics, 2023, 44(12): 3639-3652.
[8] ZOU Wei-lie, FAN Ke-wei, ZHANG Pan, HAN Zhong, . Analysis of lateral pressures on expansive soil retaining wall with expanded polystyrene geofoam inclusions and influence factors [J]. Rock and Soil Mechanics, 2023, 44(9): 2537-2544.
[9] ZHANG Yuan-sheng, LEI Yun-chao, QIANG Xiao-jun, WU Dong-dong, WANG Dong-po, WANG Ji-hua, . Centrifugal model test of slope reinforced by multi-row micro-pile frame structure [J]. Rock and Soil Mechanics, 2023, 44(7): 1983-1994.
[10] ZHU Ke-wen, YU Jian, HUANG Mao-song, . Upper bound analysis of uplift piles in saturated clay and soil plug effect [J]. Rock and Soil Mechanics, 2023, 44(7): 1995-2004.
[11] YIN Xin-sheng, SHU Ying, LIANG Lu-ju, ZHANG Shi-min, . Stability analysis of shield excavation surface in saturated silt strata considering seepage [J]. Rock and Soil Mechanics, 2023, 44(7): 2005-2016.
[12] LI Chao, MO Pin-qiang, LI Shu-chen, . Large-deformation analysis of spherical cavity expansion problem using energy theory [J]. Rock and Soil Mechanics, 2023, 44(7): 2017-2027.
[13] JI Yu-kun, WANG Qin-ke, ZHAO Guo-liang, ZHANG Jian, MA Jian-lin, . Model test and numerical simulation of vertical bearing capacity and deformation characteristics of rock-socketed uplift pile in sloped ground [J]. Rock and Soil Mechanics, 2023, 44(6): 1604-1614.
[14] MA Peng-jie, RUI Rui, CAO Xian-zhen, XIA Rong-ji, WANG Xi, DING Rui-heng, SUN Tian-jian, . Model tests of micropile-reinforced soil slope with long and gently inclined fissures [J]. Rock and Soil Mechanics, 2023, 44(6): 1695-1707.
[15] LI Bo, TANG Meng-xiong, HU He-song, LIU Chun-lin, LING Zao, SU Ding-li, HOU Zhen-kun. Experimental study on unloading and grouting effects of DPC pipe piles [J]. Rock and Soil Mechanics, 2023, 44(4): 1044-1052.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[3] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[4] WANG Shu-yun, LU Xiao-bing, ZHAO Jing, WANG Ai-lan. Post-cyclic loading undrained strength degradation characteristics of silty clay[J]. , 2009, 30(10): 2991 -2995 .
[5] HUANG Ping-lu, CHEN Cong-xin, XIAO Guo-feng, LIN Jian. Study of rock movement caused by underground mining in mines with complicated geological conditions[J]. , 2009, 30(10): 3020 -3024 .
[6] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[7] CHEN Zhong-xue, WANG Ren, HU Ming-jian, WEI Hou-zhen, WANG Xin-zhi. Study of internal factors for debris flow occurrence in Jianjia Ravine, Dongchun of Yunnan[J]. , 2009, 30(10): 3053 -3056 .
[8] LENG Wu-ming, YANG Qi, LIU Qing-tan, NIE Ru-song. Study of new method for calcutating response of piled bridge abutment in soft ground[J]. , 2009, 30(10): 3079 -3085 .
[9] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[10] ZHAO Ming-hua, LIU Xiao-ping, HUANG Li-kui. Study of characteristics of seepage of roadbed’s fissures[J]. , 2009, 30(10): 3122 -3126 .