Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (4): 950-960.doi: 10.16285/j.rsm.2023.0644

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Characteristics of preferential flow suffosion of soil-rock interface in spherical weathered granite slopes

DOU Hong-qiang1, 2, 3, XIE Sen-hua1, JIAN Wen-bin1, 2, 3, WANG Hao1, 2, 3, GUO Chao-xu2, 3   

  1. 1. Zijin School of Geoloy and Mining, Fuzhou University, Fuzhou, Fujian 350108, China; 2. Fujian Key Laboratory of Geohazard Prevention, Geological Engineering Survey in Fujian Province, Fuzhou, Fujian 350002, China; 3. Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources, Geological Engineering Survey in Fujian Province, Fuzhou, Fujian 350002, China
  • Received:2023-05-23 Accepted:2023-07-31 Online:2024-04-17 Published:2024-04-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42007235, U2005205),the Natural Science Foundation of Fujian Province (2023J01423) and the Opening Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources (FJKLGH2023K006).

Abstract: Due to rainfall, the soil-rock differential weathering interface of spherical weathered granite soil slopes is prone to evolve into a dominant seepage channel and undergo seepage suffosion, which accelerates the deformation and instability of these slopes. However, little research has been carried out on the characteristics of seepage suffosion and the migration of fine particles. Based on the unsaturated seepage theory of porous media, a numerical calculation framework is established to accurately describe the seepage suffosion process at the soil-rock interface, considering the coupling relationship between the fine particle migration, suffosion initiation response and unsaturated seepage. The finite element method is used to construct a seepage suffosion model for unsaturated granite residual soil under the effect of dominant flow. Based on the seepage suffosion process of homogeneous soil columns, the suffosion characteristics of dominant flow under three typical soil-rock interface burial states are systematically investigated. The results show that the soil-rock interface and the matrix permeability of spherical weathered granite soil slopes are highly variable, with the wetting front forming a downward depression infiltration funnel, and the degree of depression of the wetting front becomes more pronounced as rainfall continues. The degree of fine particle loss is related to the burial state of the soil-rock interface, in which the dominant flow potential suffosion of the under-filled soil condition is the most significant, and even excess pore water pressure occurs at the interface, which is the most unfavorable to the stability of this type of slope. The research results can provide a scientific basis for accurately evaluating the stability of spherical weathered granite soil slopes under rainfall conditions.

Key words: preferential flow suffosion, finite element, soil-rock interface, fine particle migration, multi-field coupling

CLC Number: 

  • TU 457
[1] SUN Rui, YANG Jun-sheng, ZHANG Qing-he, YANG Feng, . Three-dimensional lower bound finite element limit analysis method for tunnel stability based on adaptive mesh refinement strategy [J]. Rock and Soil Mechanics, 2024, 45(4): 1256-1264.
[2] MAO Jia, YU Jian-kun, SHAO Lin-yu, ZHAO Lan-hao. Discrete element method based on three dimensional deformable spheropolyhedra [J]. Rock and Soil Mechanics, 2024, 45(3): 908-916.
[3] WANG Gang, DENG Ze-zhi, JIN Wei, ZHANG Jian-min, . Staggered finite element and finite volume method for suffusion simulation based on local conservation [J]. Rock and Soil Mechanics, 2024, 45(3): 917-926.
[4] WANG Rui, HU Zhi-ping. Current situation and prospects of 2.5D finite element method for the analysis of dynamic response of railway subgrade [J]. Rock and Soil Mechanics, 2024, 45(1): 284-301.
[5] YING Hong-wei, YAN Xu-zheng, ZHOU Jian, GONG Xiao-nan, WANG Yang-yang, HAN Hua-chao, HOU Jing, . Calculation parameters of stone column improved soft soil composite foundation of dam [J]. Rock and Soil Mechanics, 2023, 44(S1): 669-677.
[6] LIU Ying-jing, YANG Jie, ZHU Han-hua, YIN Zhen-Yu. A novel multiphysics modelling approach for grout loss analysis of backfill grouting in highly permeable soils during TBM tunnelling [J]. Rock and Soil Mechanics, 2023, 44(9): 2744-2756.
[7] ZHU Bin, PEI Hua-fu, YANG Qing, LU Meng-meng, WANG Tao, . Probabilistic analysis of wave-induced seabed response based on stochastic finite element method [J]. Rock and Soil Mechanics, 2023, 44(5): 1545-1556.
[8] HANIFAH Hermil Rizki, RAHARDJO Paulus Pramono, LIM Aswin. Three-dimensional analysis and inclinometer measurements in deep circular excavation in sand soil [J]. Rock and Soil Mechanics, 2023, 44(4): 1142-1152.
[9] WANG Rui-song, GUO Cheng-chao, LIN Pei-yuan, WANG Fu-ming, . Excavation response analysis of prefabricated recyclable support structure for water-rich silt foundation pit [J]. Rock and Soil Mechanics, 2023, 44(3): 843-853.
[10] WANG Rui, HU Zhi-ping, PENG Jian-bing, WANG Qi-yao, . Simulation of dynamic response of railway subgrade using 2.5D finite element method based on reduced 2D hermite interpolation [J]. Rock and Soil Mechanics, 2023, 44(3): 908-915.
[11] YI Ming-xing, ZHU Chang-qi, WANG Tian-min, LIU Hai-feng, MA Cheng-hao, WANG Xing, ZHANG Po-yu, QU Ru, . In-situ experimental study on spudcan penetration depth of jack-up platform in a site in Qidong city [J]. Rock and Soil Mechanics, 2022, 43(S2): 487-496.
[12] LI Yan-peng, LI Zhi-yuan, HU Zhi-qiang, LIN Gao, . A modified scaled boundary finite element method for scattering analysis of canyon-underground cavity system in horizontally layered site [J]. Rock and Soil Mechanics, 2022, 43(S2): 553-562.
[13] YANG En-guang, YANG Li-yun, HU Huan-ning, WANG Zi-yang, ZHANG Fei. Experimental and numerical research on propagation of closed cracks under uniaxial compression [J]. Rock and Soil Mechanics, 2022, 43(S1): 613-622.
[14] FERRO Edgar, OSS Andrea, SIMEONI Lucia, . Seismic analysis of cantilever earth retaining walls embedded in dry sand by simplified approaches and finite element method [J]. Rock and Soil Mechanics, 2022, 43(6): 1617-1634.
[15] LIU Ying-jing, YANG Jie, YIN Zhen-yu, . Numerical analysis of the impact of internal erosion on underground structures: application to tunnel leakage [J]. Rock and Soil Mechanics, 2022, 43(5): 1383-1390.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .