›› 2002, Vol. 23 ›› Issue (1): 17-22.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Earth pressure computations of cohesive backfill with inclined surface under surcharge by limit analysis

NIAN Ting -kai ,LUAN Mao-tian   

  1. Department of Civil Engineering and State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian116024,China
  • Received:2001-02-12 Published:2002-01-15

Abstract: Rankine’s theory of earth pressure can not be directly employed to the case of cohesive backfill with an inclined surface .For this practical case ,it seems that no analytical solution is available .In this paper ,a theoretical solution of active and passive earth pressures of cohesive backfill with an inclined surface under surcharge was developed on the basis of the lower-bound theorem of limit analysis .First ,a statically-balanced stress field of the slope ground consisting of cohesive soils was construed from elasticity theory .Then it was enforced to not violate the Mohr-Coulomb yield condition .According to the lower-bound theorem of limit analysis ,two extreme values of lateral stress which respectively correspond to active and passive earth pressures were to be found and expressed in the superposition from .Based on the a number of numerical computations conducted for different combinations of the key parameters related to the problem ,the computed results useful for engineering practice were given in tabular and graphical forms .The effects of the main parameters on comprehensive coefficients of active and passive were discussed .

Key words: earth pressure , limit equilibrium ;limit analysis , lower-bound theorem ;cohesive soil

[1] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[2] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[3] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
[4] SHAO Sheng-jun, CHEN Fei, DENG Guo-hua, . Seismic passive earth pressure against the retaining wall of structural loess based on plane strain unified strength formula [J]. Rock and Soil Mechanics, 2019, 40(4): 1255-1262.
[5] ZHU Jun-gao, JIANG Ming-jie, LU Yang-yang, JI En-yue, LUO Xue-hao, . Experimental study on influence of stress state on at-rest earth pressure coefficient for coarse grained soil [J]. Rock and Soil Mechanics, 2019, 40(3): 827-833.
[6] TANG De-qi, YU Feng, CHEN Yi-tian, LIU Nian-wu, . Model excavation tests on double layered retaining structure composed of existing and supplementary soldier piles [J]. Rock and Soil Mechanics, 2019, 40(3): 1039-1048.
[7] LIU Yang, YU Peng-qiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls [J]. Rock and Soil Mechanics, 2019, 40(2): 506-516.
[8] LIANG Bo, LI Yan-jun, LING Xue-peng, ZHAO Ning-yu, ZHANG Qing-song, . Determination of earth pressure by miniature earth pressure cell in centrifugal model test [J]. Rock and Soil Mechanics, 2019, 40(2): 818-826.
[9] JIANG Cheng-xuan, CHEN Bao-guo, MAO Xin-ying, SHE Ming-kang. Stress characteristics of high fill load-shedding culvert on flexible foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 275-280.
[10] YIN Zhi-qiang, SHE Cheng-xue, YAO Hai-lin, LU Zheng, LUO Xing-wen,. Research on earth pressure behind row piles from clayey backfill considering soil arching effect [J]. , 2018, 39(S1): 131-139.
[11] LIU Mei-lin, HOU Yan-Juan, ZHANG Ding-li, FANG Qian. Research on active earth pressure of flexible retaining wall considering construction effect of foundation pit in sandy soil [J]. , 2018, 39(S1): 149-158.
[12] YAO Ai-jun, ZHANG Jian-tao, GUO Hai-feng, GUO Yan-fei. Influence of unloading-loading of foundation on shield tunnel underneath [J]. , 2018, 39(7): 2318-2326.
[13] XU Chang-jie, LIANG Lu-ju, CHEN Qi-zhi, LIU Yuan-kun,. Research on loosening earth pressure considering the patterns of stress distribution in loosening zone [J]. , 2018, 39(6): 1927-1934.
[14] XIE Tao, LUO Qiang, ZHANG Liang, LIAN Ji-feng, YU Yue-ming, . Calculation of wall displacement to reach active or passive earth pressure state [J]. , 2018, 39(5): 1682-1690.
[15] ZHENG Tong , LIU Hong-shuai, YUAN Xiao-ming, TU Jie-wen, TANG Ai-ping, QI Wen-hao,. Full process of static and dynamic performances of cantilever anti-slide pile [J]. , 2018, 39(3): 854-862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, LIU Fang-cheng, XIONG Wei. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. , 2010, 31(2): 377 -381 .
[2] XIAO Zhong, WANG Yuan-zhan, JI Chun-ning, HUANG Tai-kun, SHAN Xu. Stability analysis of large cylindrical structure for strengthening soft foundation under wave load[J]. , 2010, 31(8): 2648 -2654 .
[3] LI Jian-hua, XU Bin, XU Man-qing, LIU You-ping. Vibration isolation using pile rows in a layered poroelastic half-space against vibration due to harmonic loads[J]. , 2010, 31(S2): 12 -18 .
[4] TIAN Qi-qiang,HOU Xing-min,WANG Zi-fa. A new method of subsoil damping ratio identification based on free vibration of a massive concrete foundation[J]. , 2011, 32(1): 211 -216 .
[5] CHAI Bo, YIN Kun-long, CHEN Li-xia, LI Yuan-yao. Analysis of slope deformation under control of rock mass structure[J]. , 2009, 30(2): 521 -525 .
[6] ZHAO Hong-bo, RU Zhong-liang, ZHANG Shi-ke. Application of support vector machine to reliability analysis of underground engineering[J]. , 2009, 30(2): 526 -530 .
[7] ZHANG Ting,LIU Han-long,HU Yu-xia,STEWART Doug. Geotechnical drum centrifuge technique and its engineering application[J]. , 2009, 30(4): 1191 -1196 .
[8] SU Guo-shao, ZHANG Ke-shi, Lü Hai-bo. A cooperative optimization method based on particle swarm optimization and Gaussian process for displacement back analysis[J]. , 2011, 32(2): 510 -515 .
[9] LENG Yi,LUAN Mao-tian,XU Cheng-shun,MA Tai-lei. Experimental research on behaviors of saturated sand subject to drained shear strength under complex stress conditions[J]. , 2009, 30(6): 1620 -1626 .
[10] ZHANG Ding-wen,LIU Song-yu,GU Chen-ying. Elastoplastic analysis of cylindrical cavity expansion with anisotropic initial stress[J]. , 2009, 30(6): 1631 -1634 .