›› 2003, Vol. 24 ›› Issue (4): 538-544.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Discussion on upper-bound method of limit analysis for geotechenical material

WANG Jing-lin1, ZHENG Ying-ren1, CHEN Yu-yao2, LI Ke-yu1   

  1. 1. Logistic Engineering University, Chongqing 400041, China; 2. Air Force Survey and Design Institute of Guangzhou Military District, Guangzhou 510000, China
  • Received:2002-05-09 Online:2003-08-11 Published:2014-08-19

Abstract: The present upper-bound method of limit analysis has many self-contradictory conceptions in theory although its results are reasonable. For example, the associated flow rule is often used at present, but it is shown by experiments that it doesn’t adapt to geotechnical materials; the volume deformation which is larger than real deformation is produced in calculating, but it is assumed to be constant in classical analyzing theory; the velocity slip line is the same as the stress characteristic line according to associated flow rule, but an angle between the two lines is adopted in analyzing; the shear stress and normal stress exist simultaneously in every point of slip surface, but the friction work is not reflected in process of limit analysis. The scientific theory of the limit analysis method about the geotechnical materials is given by the generalized plastic mechanics theory, which thrives in China at the present years. The upper-bound method of limit analysis based on the generalized plastic theory is given in the paper, so these self-contradictory conceptions can be avoided completely and the right solutions are gained. To compare with the classical method, it is proved that the results of limit analysis solutions gained by two methods are nearly the same. The classical method can be used as a practical method since it is simple to solve questions. A systematic analysis and comparison of the above two limit analysis methods is given, and the sameness and un-sameness between them are clarified.

Key words: limit analysis, upper-bound method, associated flow rule, generalized plastic mechanics

CLC Number: 

  • TU43
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[2] WANG Zhen, CAO Lan-zhu, WANG Dong, . Evaluation on upper limit of heterogeneous slope stability [J]. Rock and Soil Mechanics, 2019, 40(2): 737-742.
[3] GUO Hong-xian, ZHOU Ding. Discussion on stability of soil nailing in excavation in soft clay [J]. Rock and Soil Mechanics, 2018, 39(S2): 398-404.
[4] XU Peng, JIANG Guan-lu, QIU Jun-jie, LIN Zhan-zhan, WANG Zhi-meng,. Limit analysis on yield acceleration and failure model of reinforced soil retaining walls using two-wedge method [J]. , 2018, 39(8): 2765-2770.
[5] YIN Jun-fan, LEI Yong, CHEN Qiu-nan, LIU Yi-xin, DENG Jia-zheng,. Upper bound analysis of the punching shear failure of cave roof in karst area [J]. , 2018, 39(8): 2837-2843.
[6] YAN Min-jia, XIA Yuan-you, LIU Ting-ting. Limit analysis of bedding rock slopes reinforced by prestressed anchor cables under seismic loads [J]. , 2018, 39(7): 2691-2698.
[7] CAO Wen-gui, TAN Jian-hui, HU Wei-dong, . Upper bound of ultimate bearing capacity for the reinforced grounds [J]. , 2018, 39(6): 1955-1962.
[8] LI Ze, LIU Yi, ZHOU Yu, WANG Jun-xing,. Lower bound analysis of ultimate bearing capacity of stone masonry retaining wall slope using mixed numerical discretisation [J]. , 2018, 39(3): 1100-1108.
[9] CHEN Chun-shu, XIA Yuan-you. Seismic reliability analysis of slope reinforced with prestressed anchor cable based on global limit response surface [J]. , 2017, 38(S1): 255-262.
[10] ZHENG Gang, NIE Dong-qing, DIAO Yu, CHENG Xue-song ,. Failure mechanism of multi-bench retained foundation pit [J]. , 2017, 38(S1): 313-322.
[11] LEI Yong, YIN Jun-fan, CHEN Qiu-nan, YANG Wei,. Determination of ultimate bearing capacity of cave roof using limit analysis method [J]. , 2017, 38(7): 1926-1932.
[12] HU Wei-dong, CAO Wen-gui, YUAN Qing-song,. Upper bound solution for ultimate bearing capacity of ground adjacent to slope based on nonlinear failure criterion [J]. , 2017, 38(6): 1639-1646.
[13] YANG Zi-han, YANG Xiao-li, XU Jing-shu, LI Yong-xin, SUN Zhi-bin,. Two methods for rock wall thickness calculation in karst tunnels based on upper bound theorem [J]. , 2017, 38(3): 801-809.
[14] LIU Jie, HUANG Da, ZHAO Fei, YANG Chao, SUN Sha, . Limit analysis of plastic critical depth of retaining wall under sliding displacement mode [J]. , 2017, 38(2): 428-434.
[15] HE Jian-qing, XIAO Lan, ZHANG Wen-yong, GAO Wen-hua,. A method for calculating ultimate pull-out capacity of rock bolt based on modified Mohr-Coulomb failure criterion [J]. , 2016, 37(9): 2484-2488.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[6] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[7] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[8] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[9] CHEN Bao-guo , SUN Jin-shan , ZHANG Lei. Study of stressing state and ground treatment of reinforced concrete arch culvert[J]. , 2011, 32(5): 1500 -1506 .
[10] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .