›› 2003, Vol. 24 ›› Issue (6): 943-946.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Axial response of rock specimen considering strain rate gradient effect in uniaxial compression

WANG Xue-bin, PAN Yi-shan, YU Hai-jun   

  1. Department of Mechanics and Engineering Sciences, Liaoning Technical University, Fuxin 123000, China
  • Received:2002-07-17 Online:2003-12-10 Published:2014-08-19

Abstract: Strain softening structural response of rock material in uniaxial compression is investigated analytically based on shear strain rate gradient formation. One dimensional shear strain rate gradient formation of the second order is proposed based on the non-local continuum model. Non-local plastic shear strain rate is dependent on local shear strain rate and its second spatial derivatives. The closed-form analytical solution of the local shear strain rate is straightly obtained by substitution of the non-local plastic shear strain rate into the local one in classical plastic theory, instead of differentiating the local shear strain with respect to time. Relative shear velocity along shear band is calculated by integrating the local shear strain rate. Velocity at the end of rock specimen beyond the peak compressive stress can be divided into two parts. One is elastic part described by Hooke’s law; the other is plastic part dependent on the relative shear velocity. Summing the two parts yields analytical solution of structural response for uniaxial compressive rock specimen subjected to shear failure. It is shown that sudden snap-back instability can occur as internal length parameter (or thickness of shear band) of rock material is decreased. Higher shear softening modulus, lower Poisson’s ratio or inclination angle of shear band can lead to brittle axial response. Based on analogy between specimen and pillar in mines, the brittle axial response of rock specimen means that pillars in mine will lose their stability and pillar bursts will occur. Main advantage of the present analytical process based on strain rate gradient formation is concise.

Key words: gradient-dependent plasticity, non-local continuum model, strain rate, localization, shear band, axial response, strain softening, stability

CLC Number: 

  • TU 451
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[2] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[3] FU Long-long, ZHOU Shun-hua, TIAN Zhi-yao, TIAN Zhe-kan, . Force chain evolution in granular materials during biaxial compression [J]. Rock and Soil Mechanics, 2019, 40(6): 2427-2434.
[4] XU Peng, JIANG Guan-lu, LEI Tao, LIU Qi, WANG Zhi-meng, LIU Yong, . Calculation of seismic displacement of reinforced soil retaining walls considering backfill strength [J]. Rock and Soil Mechanics, 2019, 40(5): 1841-1846.
[5] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[6] LI Chi, WANG Shuo, WANG Yan-xing, GAO Yu, BAI Siriguleng, . Field experimental study on stability of bio-mineralization crust in the desert [J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298.
[7] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[8] JIANG Hai-ming, LI Jie, WANG Ming-yang, . Theoretical and experimental research on the low-friction effect in slip stability of blocky rock mass [J]. Rock and Soil Mechanics, 2019, 40(4): 1405-1412.
[9] XU Qiang, XIAO Ming, CHEN Jun-tao, NI Shao-hu, . Solution to seepage monitoring data deficiency and judgement of seepage stability [J]. Rock and Soil Mechanics, 2019, 40(4): 1526-1534.
[10] WU Meng-xi, GAO Gui-yun, YANG Jia-xiu, ZHAN Zheng-gang, . A method of predicting critical gradient for piping of sand and gravel soils [J]. Rock and Soil Mechanics, 2019, 40(3): 861-870.
[11] WANG Teng, WU Rui. Study of vertical penetration resistance of seabed pipelines in cohesive soil [J]. Rock and Soil Mechanics, 2019, 40(3): 871-878.
[12] GAO Feng, XIONG Xin, ZHOU Ke-ping, LI Jie-lin, SHI Wen-chao, . Strength deterioration model of saturated sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 926-932.
[13] WANG Qi-qian, ZHOU Hong-fu, FU Wen-xi, YE Fei, . Analysis for influence of water flow drag force on stability of slope shallow soil [J]. Rock and Soil Mechanics, 2019, 40(2): 759-766.
[14] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
[15] YIN Xiao-meng, YAN E-chuan, LIU Xu-yao, LI Xing-ming, . Study on force of underground water in soil stability calculation [J]. Rock and Soil Mechanics, 2019, 40(1): 156-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[2] LU Zu-de, CHEN Cong-xin, CHEN Jian-sheng, TONG Zhi-yi, ZUO Bao-cheng. Field shearing test for heavily weathered hornstone of Three Phase Project of Ling'ao Nuclear Power Station[J]. , 2009, 30(12): 3783 -3787 .
[3] QU Wan-bo, LIU Xin-rong, FU Yan, QIN Xiao-ying. Numerical simulation of preliminary lining of large section crossing tunnels constructed with PBA method[J]. , 2009, 30(9): 2799 -2804 .
[4] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[5] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[6] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[7] LONG Zhao,ZHAO Ming-hua,ZHANG En-xiang,LIU Jun-long. A simplified method for calculating critical anchorage length of bolt[J]. , 2010, 31(9): 2991 -2994 .
[8] MENG Qing-shan,KONG Ling-wei,CHEN Neng-yuan,FAN Jian-hai,GUO Gang. Centrifugal model test on slope supporting with pile-anchor combined retaining wall[J]. , 2010, 31(11): 3379 -3384 .
[9] LENG Yi-fei, ZHANG Xi-fa, YANG Feng-xue, JIANG Long, ZHAO Yi-min. Experimental research on unfrozen water content of frozen soils by calorimetry[J]. , 2010, 31(12): 3758 -3764 .
[10] XU Zhi-jun, ZHENG Jun-jie, ZHANG Jun, MA Qiang. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. , 2010, 31(S2): 407 -411 .