›› 2004, Vol. 25 ›› Issue (12): 1933-1936.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effects of physical grid in rock mass for generation of cover system for numerical manifold method

ZHU Ai-jun1 , DENG An-fu1 , YAN Chang-wu1 , DENG wei-dong2   

  1. 1.College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Chongqing Communications Research & Design Institute,Chongqing 400067, China
  • Received:2003-09-08 Online:2004-12-10 Published:2014-08-19

Abstract: The mathematical cover has relative independence to physical grid, so the generation of cover system for numerical manifold method is more flexible and convenient than finite element grid, but in some physical grid conditions, it has some dependence to physical grid as same as finite element method. Have discussed the effects of crack and boundary line in rock mass to the generation of cover system for numerical manifold method, point out that mathematical cover must suit with crack and boundary line in rock mass, and put forward corresponding method to form the cover system for numerical manifold method, it is helpful for application of the numerical manifold method in rock mass engineering.

Key words: numerical manifold method, cover system, rock mass, physical grid

CLC Number: 

  • TU 452
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] YANG Shi-kou, ZHANG Ji-xun, REN Xu-hua, . Study of contact cracks based on improved numerical manifold method [J]. Rock and Soil Mechanics, 2019, 40(5): 2016-2021.
[2] JIANG Hai-ming, LI Jie, WANG Ming-yang, . Theoretical and experimental research on the low-friction effect in slip stability of blocky rock mass [J]. Rock and Soil Mechanics, 2019, 40(4): 1405-1412.
[3] LIU Deng-xue, ZHANG You-liang, DING Xiu-li, HUANG Shu-ling, PEI Qi-tao, . Local mesh refinement algorithm based on analysis-suitable T-spline in numerical manifold method [J]. Rock and Soil Mechanics, 2019, 40(4): 1584-1595.
[4] KE Zhi-qiang, WANG Huan-ling, XU Wei-ya, LIN Zhi-nan, JI Hua, . Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints [J]. Rock and Soil Mechanics, 2019, 40(2): 660-667.
[5] LI Wei, WANG Zhe-chao, BI Li-ping, LIU Jie, . Representative elementary volume size for permeable property and equivalent permeability of fractured rock mass in radial flow configuration [J]. Rock and Soil Mechanics, 2019, 40(2): 720-727.
[6] SUN Qian-cheng, ZHENG Min-zong, LI Shao-jun, GUO Hao-sen, CHENG Yuan, PEI Shu-feng, JIANG Quan, . Variation characteristics and determination of tunnel relaxation depth of columnar jointed rock mass [J]. Rock and Soil Mechanics, 2019, 40(2): 728-736.
[7] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[8] JIANG Xiong, XU Nu-wen, ZHOU Zhong, HOU Dong-qi, LI Ang, ZHANG Min, . Failure mechanism of surrounding rock of bus-bar tunnels at Lianghekou hydropower station subjected to excavation [J]. Rock and Soil Mechanics, 2019, 40(1): 305-314.
[9] LIU Yan-zhang, GUO Yun-lin , HUANG Shi-bing , CAI Yuan-tian , LI Kai-bing , WANG Liu-bao , LI Wei , . Study of fracture characteristics and strength loss of crack quasi-sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2018, 39(S2): 62-71.
[10] LI Shen-zhen, SHA Peng, WU Fa-quan, WU Jie. Anisotropic characteristics analysis of deformation of layered rock mass [J]. Rock and Soil Mechanics, 2018, 39(S2): 366-373.
[11] LIU Quan-sheng, LUO Ci-you, CHEN Zi-you, LIU He, SANG Hao-min, WANG Wen-kai, . Development of triaxial rheological testing equipment for in-situ rock mass [J]. Rock and Soil Mechanics, 2018, 39(S2): 473-479.
[12] LIU Gang, MA Feng-shan, ZHAO Hai-jun, FENG Xue-lei, GUO Jie,. Failure mechanisms study of heterogeneous jointed rock mass considering statistical damage model in tensile-shear test [J]. , 2018, 39(S1): 9-20.
[13] YANG Shi-kou, ZHANG Ji-xun, REN Xu-hua,. Study of three-dimensional crack propagation based on numerical manifold method [J]. , 2018, 39(S1): 488-494.
[14] LI Dong-qi, LI Zong-li, Lü Cong-cong. Analysis of fracture strength of rock mass considering fissure additional water pressure [J]. , 2018, 39(9): 3174-3180.
[15] GAO Qiang, ZHANG Qiang-yong, ZHANG Xu-tao, XIANG Wen,. Zonal disintegration mechanism analysis based on strain gradient of deep surrounding rock mass under dynamic unloading effect [J]. , 2018, 39(9): 3181-3194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[2] LI Hong-bo,GUO Xiao-hong. Research on calculation metheods of earth pressure on muti-arch tunnel for highway[J]. , 2009, 30(11): 3429 -3434 .
[3] LU Zu-de, CHEN Cong-xin, CHEN Jian-sheng, TONG Zhi-yi, ZUO Bao-cheng. Field shearing test for heavily weathered hornstone of Three Phase Project of Ling'ao Nuclear Power Station[J]. , 2009, 30(12): 3783 -3787 .
[4] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[5] LI Hua-ming, JIANG Guan-lu, LIU Xian-feng. Study of dynamic characteristics of saturated silty soil ground treated by CFG columns[J]. , 2010, 31(5): 1550 -1554 .
[6] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[7] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[8] XU Zhi-jun, ZHENG Jun-jie, ZHANG Jun, MA Qiang. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. , 2010, 31(S2): 407 -411 .
[9] DENG Zong-wei, LENG Wu-ming, LI Zhi-yong, YUE Zhi-ping. Finite element analysis of time effect for coupled problem of temperature and stress fields in slope supported by shotcrete[J]. , 2009, 30(4): 1153 -1158 .
[10] WANG Hong-liang , FAN Peng-xian , WANG Ming-yang , LI Wen-pei , QIAN Yue-hong. Influence of strain rate on progressive failure process and characteristic stresses of red sandstone[J]. , 2011, 32(5): 1340 -1346 .