›› 2004, Vol. 25 ›› Issue (7): 1011-1016.

• Fundamental Theroy and Experimental Research •     Next Articles

Analysis of seismic response properties of layered foundation-nonlinear structure system

FANG Ying-guang   

  1. South China University of Technology, Guangzhou 510641, China
  • Received:2003-05-19 Online:2004-07-09 Published:2014-07-18

Abstract: On the basis of dynamic equations for seismic analysis derived from system energy, the seismic response of layered foundation-nonlinear structure system is studied by means of asymptotic method (KBM). The analytical formulas of amplitude-frequency and phase-frequency are obtained. A series of calculating results for different values of foundation parameters are presented in seismic resonant area. And then according to corresponding calculating results, the effect of foundation parameters on seismic properties of structure is analyzed; and the nonlinear dynamic characteristics,such as distortion of resonant area, bifurcation and suddenly jumping of amplitude, as well as the path effect , are discussed. It is indicated that the value change of foundation parameters of the same sort causes remarkable influence on structure dynamic properties, and the calculating error by the current Code of seismic design might be obvious for the analysis of layered foundation- nonlinear structure system. The interaction between soil and structure and nonlinear properties must be considered in order that design parameters are more reasonable and optimal.

Key words: layered foundation, nonlinear structure, seismic response, bifurcation, catastrophe

CLC Number: 

  • TU 435
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] ZOU You-xue, WANG Rui, ZHANG Jian-mi, . Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443-2455.
    [2] SUN Guang-chen, XIE Jia-you, HE Shan, FU He-lin, JIANG Xue-liang, ZHENG Liang, . Dynamic responses of bridge-tunnel approaching parts under different seismic excitation directions in soft surrounding rock [J]. Rock and Soil Mechanics, 2019, 40(3): 893-902.
    [3] YANG Su-chun, ZHANG Ming-yi, WANG Yong-hong, SANG Song-kui, MIAO De-zi. Field test on pile tip resistance of closed-end jacked pipe pile penetrating into layered foundation [J]. Rock and Soil Mechanics, 2018, 39(S2): 91-99.
    [4] XU Ming, TANG Ya-feng, LIU Xian-shan, LUO Bin, TANG Dao-yong,. Seismic dynamic response of rock slope anchored with adaptive anchor cables [J]. , 2018, 39(7): 2379-2386.
    [5] HAN Bing, LIANG Jian-wen, ZHU Jun,. Effect of lenticle on seismic response of structures in deep water-saturated poroelastic soft site [J]. , 2018, 39(6): 2227-2236.
    [6] YAO Yu, WANG Rui, LIU Tian-yun, ZHANG Jian-min,. Seismic response of high concrete face rockfill dams subject to non-uniform input motion [J]. , 2018, 39(6): 2259-2266.
    [7] Lü Qian, ZHANG Yun, LI Zhao-hua, TAO Zhi-gang, HE Man-chao, . Quasi-static-dynamic transformation numerical analysis of rock landslide based on the second-order work criterion [J]. , 2018, 39(3): 1091-1099.
    [8] XIA Kai-zong, CHEN Cong-xin, SONG Xu-gen, LIU Xiu-min, ZHOU Yi-chao, . Analysis of catastrophic failure mechanism of roof bed in gypsum mines induced by relative humidity [J]. , 2018, 39(2): 589-597.
    [9] LI Rui-shan, YUAN Xiao-ming, LI Cheng-cheng. Analysis of relationship between dynamic shear strain and vibration velocity of horizontal soil layers [J]. , 2018, 39(10): 3623-3630.
    [10] YIN Xun-qiang, JIN Yu-hao, WANG Gui-xuan,. Seismic response analysis of nuclear island buildings considering soil-structure interaction and nonlinear soil foundation [J]. , 2017, 38(4): 1114-1120.
    [11] YANG Xiao-mei, LAI Qiang-lin. Time-domain equivalent linearization method for two-dimensional seismic response analysis [J]. , 2017, 38(3): 847-856.
    [12] XING Hao-jie, LI Hong-jing, YANG Xiao-mei,. Seismic response analysis of horizontal layered soil sites based on Chebyshev spectral element model [J]. , 2017, 38(2): 593-600.
    [13] LEI Su-su , GAO Yong-tao , PAN Dan-guang , . Equivalent input of soil-structure interaction system considering radiation damping [J]. , 2016, 37(S1): 583-590.
    [14] WANG Ming-wu, ZHAO Kui-yuan, ZHU Qi-kun, XU Xin-yu. Seismic responses of a micropile in liquefiable soils [J]. , 2016, 37(6): 1543-1549.
    [15] SONG Xin-hua, YAN Hong-hao. Analysis of stability of masonry slope based on cusp catastrophe theory [J]. , 2016, 37(12): 3499-3505.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] LEI Yong-sheng. Research on protective measures of City Wall and Bell Tower due to underneath crossing Xi’an Metro Line No.2[J]. , 2010, 31(1): 223 -228 .
    [2] LIU Gan-bin,ZHENG Rong-yue,LU Zheng. Thermo-hydro-elastodynamic response of spherical hollow chamber under explosive loading[J]. , 2010, 31(3): 918 -924 .
    [3] XIAO Zun-qun,LIU Bao-chen,QIAO Shi-fan,YANG Xiao-li,WU Guo-dong. Experimental research on new grouting materials of acidic water glass-calcium carbonate[J]. , 2010, 31(9): 2829 -2834 .
    [4] LI Jian-hua, XU Bin, XU Man-qing, LIU You-ping. Vibration isolation using pile rows in a layered poroelastic half-space against vibration due to harmonic loads[J]. , 2010, 31(S2): 12 -18 .
    [5] TIAN Qi-qiang,HOU Xing-min,WANG Zi-fa. A new method of subsoil damping ratio identification based on free vibration of a massive concrete foundation[J]. , 2011, 32(1): 211 -216 .
    [6] ZHAO Hong-bo, RU Zhong-liang, ZHANG Shi-ke. Application of support vector machine to reliability analysis of underground engineering[J]. , 2009, 30(2): 526 -530 .
    [7] SU Guo-shao, ZHANG Ke-shi, Lü Hai-bo. A cooperative optimization method based on particle swarm optimization and Gaussian process for displacement back analysis[J]. , 2011, 32(2): 510 -515 .
    [8] GAO Wen-hua, ZHU Jian-qun, ZHANG Zhi-min, HUANG Zi-yong. Numerical simulation of ultimate bearing capacity of soft rock foundation based on Hoek-Brown nonlinear failure criterion[J]. , 2011, 32(2): 593 -598 .
    [9] HU Ping, HUANG Mao-song, MA Shao-kun, QIN Hui-lai. Non-coaxial constitutive modeling of sands based on critical state model[J]. , 2011, 32(S1): 230 -235 .
    [10] DING Xuan-ming, LIU Han-long. Comparative analysis of dynamic responses of cast-in-place concrete large-diameter pipe pile and solid pile in homogeneous soil[J]. , 2011, 32(S1): 260 -264 .