›› 2005, Vol. 26 ›› Issue (S1): 105-108.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Mixed boundary value problem of vertical vibration of a rigid foundation on elastic soils with saturated substratum

XU Chang-jie1, SUN Yi-hua2, LI Qing-jin1, CAI Yuan-qiang1   

  1. 1. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310027, China; 2. Hangzhou Civil Architectural Design Institute, Hangzhou 310003, China
  • Received:2005-01-21 Published:2005-12-15

Abstract: Based on the Biot’s dynamic equations, the vertical vibration of a rigid strip foundation resting on partially saturated soil subgrade which is composed of a dry elastic layer and a saturated substratum is studied. The analysis relied on the use of Fourier integral transform techniques and a pair of dual integral equations governing the vertical vibration of the rigid foundation is listed under the consideration of mixed boundary value condition and the continuity condition. The results are reduced to the case for saturated half-space. The set of dual integral equations are converted to linear equations by means of infinite series of orthogonal functions—the Jacobi polynomials. Consequently, the dynamic compliance Cv for partially saturated soils versus the dimensionless frequency b0 is evaluated. Numerical results indicate that: the thickness has great effect on the dynamic coefficient, and as the thickness of the elastic stratum is less than the tenth half width of the strip foundation, the curve of the dynamic compliance versus the dimensionless frequency basically match together with the saturated half-space; and the saturated half space is the special case of the partially saturated soil subgrade(the thickness of the superimposed elastic soil Hn is equal to 0 ).

Key words: dynamic complicance coefficient, strip rigid foundation, mixed boundary-value condition

CLC Number: 

  • TU 435
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] HAN Jun-yan, HOU Ben-wei, ZHONG Zi-lan, ZHAO Mi, LI Li-yun, DU Xiu-li. Research on shaking table test scheme of buried pipeline under multi-point non-uniform seismic excitations [J]. Rock and Soil Mechanics, 2019, 40(6): 2127-2139.
[2] ZOU You-xue, WANG Rui, ZHANG Jian-mi, . Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443-2455.
[3] XIONG Zhong-ming, ZHANG Chao, CHEN Xuan. Model test on ground motion parameters of site with fissures under seismic loading [J]. Rock and Soil Mechanics, 2019, 40(2): 421-428.
[4] DING Bo-yang, SONG You-zheng. Dynamic response calculation for u-P solution in saturated soil subjected to an underground point source [J]. Rock and Soil Mechanics, 2019, 40(2): 474-480.
[5] DONG Jian-xun, LIU Hai-xiao, LI Zhou. A bounding surface plasticity model of sand for cyclic loading analysis [J]. Rock and Soil Mechanics, 2019, 40(2): 684-692.
[6] CUI Qi, HOU Jian-guo, SONG Yi-le. Analyses of restraint of surrounding rock and structural vibration characteristics of underground powerhouse for pumped storage power station [J]. Rock and Soil Mechanics, 2019, 40(2): 809-817.
[7] XU Cheng-shun, DOU Peng-fei, GAO Liu-cheng, CHEN Su, DU Xiu-li, . Shaking table test on effects of ground motion duration compression ratio on seismic response of liquefied foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 147-155.
[8] HU Shuai-wei, CHEN Shi-hai, . Analytical solution of dynamic response of rock bolt under blasting vibration [J]. Rock and Soil Mechanics, 2019, 40(1): 281-287.
[9] BA Zhen-ning, ZHOU Xu, LIANG Jian-wen, . Scattering of plane qP-qSV waves by a convex topography based on the transversely isotropic medium [J]. Rock and Soil Mechanics, 2019, 40(1): 379-387.
[10] REN Fei-fan, HE Jiang-yang, WANG Guan, ZHAO Qi-hua, . Numerical analysis of dynamic characteristics of coarse grained soils based on Cyclic-mobility constitutive model [J]. Rock and Soil Mechanics, 2018, 39(12): 4627-4641.
[11] LI Rui-shan, YUAN Xiao-ming, LI Cheng-cheng. Analysis of relationship between dynamic shear strain and vibration velocity of horizontal soil layers [J]. , 2018, 39(10): 3623-3630.
[12] LUO Lan, XIA Tang-dai, QIU Hao-miao, . Effect of particle shape on shear modulus of sand in K0 condition [J]. , 2018, 39(10): 3695-3702.
[13] BAO Han-ying, CHEN Wen-hua, ZHANG Qian. Propagation of subway vertical vibration in layered soils based on thin layer method and moving coordinate system method [J]. , 2018, 39(9): 3277-3284.
[14] LI Zhi-yuan, LI Jian-bo, LIN Gao, HAN Ze-jun,. Analysis of scattered field characteristics of valley embedded in layered soil [J]. , 2018, 39(9): 3453-3460.
[15] SONG Jia, GU Quan, XU Cheng-shun, DU Xiu-li,. Implementation of fully explicit method for dynamic equation of saturated soil in OpenSees [J]. , 2018, 39(9): 3477-3485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Hong-bao, YIN Guang-zhi, LI Xiao-shuang. Experimental study of characteristics of tensile burned gritstone[J]. , 2010, 31(4): 1143 -1146 .
[2] HE Si-ming, WU Yong, LI Xin-po. Research on mechanism of uplift rock-socketed piles[J]. , 2009, 30(2): 333 -337 .
[3] LIU Qing-bing,XIANG Wei,ZHANG Wei-feng,CUI De-shan. Experimental study of ionic soil stabilizer-improves expansive soil[J]. , 2009, 30(8): 2286 -2290 .
[4] SHI Hai-ying , GONG Xiao-nan , YU Jian-lin , LIAN Feng. A calculation method of pile spacing based on Hewlett soil arching theory[J]. , 2011, 32(S1): 351 -0355 .
[5] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[6] XIA Tang-dai , SUN Miao-miao , CHEN Chen. An improved method for multiple scattering and isolation of horizontal shear wave using double row of elastic discontinuous barrier[J]. , 2011, 32(8): 2402 -2408 .
[7] WEI Hou-zhen, YAN Rong-tao, CHEN Pan, TIAN Hui-hui, WU Er-lin, WEI Chang-fu. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different hydrate contents under triaxial shear tests[J]. , 2011, 32(S2): 198 -203 .
[8] WU Yi. An equivalent far-field artificial dynamic-boundary condition for one-dimensional problem[J]. , 2011, 32(11): 3508 -3514 .
[9] GONG Si-yuan,DOU Lin-ming,HE Jiang,HE Hu,LU Cai-ping,MU Zong-long. Study of correlation between stress and longitudinal wave velocity for deep burst tendency coal and rock samples in uniaxial cyclic loading and unloading experiment[J]. , 2012, 33(1): 41 -47 .
[10] MENG Zhen, CHEN Jin-jian, WANG Jian-hua, YIN Zhen-yu. Study of model test on bearing capacity of screw piles in sand[J]. , 2012, 33(S1): 141 -145 .