›› 2005, Vol. 26 ›› Issue (S1): 252-254.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Application of packaged reinforced soil retaining wall to maintenance engineering of city wall

ZHOU Ai-zhao, LU Ting-hao, WANG Wei   

  1. Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China
  • Received:2005-01-21 Published:2005-12-15

Abstract: With the example of maintenance of Ming Dynasty city wall between Jianning Road and Yijiang City Gate in Nanjing, the application of the packaged reinforced soil retaining wall to city wall maintenance is introduced . Its working mechanism and construction art are analyzed. With small site and poor foundation of city wall inner side, this project shows that good maintenance result of the city wall can be obtained by the use of packaged reinforced soil retaining wall.

Key words: packaged reinforced soil retaining wall, maintenance of city wall, stability analysis

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[2] QIN Yu-qiao, TANG Hua, FENG Zhen-yang, YIN Xiao-tao, WANG Dong-ying, . Slope stability evaluation by clustering analysis [J]. , 2018, 39(8): 2977-2983.
[3] LI Qing-chuan, LI Shu-cai, WANG Han-peng, ZHANG Hong-jun,ZHANG Bing, ZHANG Yu-qiang,. Stability analysis and numerical experiment study of excavation face for tunnels overlaid by quicksand stratum [J]. , 2018, 39(7): 2681-2690.
[4] ZHANG Hai-tao, LUO Xian-qi, SHEN Hui, BI Jin-feng. Vector-sum-based slip surface stress method for analysing slip mass stability [J]. , 2018, 39(5): 1691-1698.
[5] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
[6] ZHU Yan-peng, YANG Xiao-yu, MA Xiao-rui, YANG Xiao-hui, YE Shuai-hua, . Several questions of double reduction method for slope stability analysis [J]. , 2018, 39(1): 331-338.
[7] NIE Zhi-bao, ZHENG Hong, ZHANG Tan. Determination of slope critical slip surfaces using strength reduction method and wavelet transform [J]. , 2017, 38(6): 1827-1831.
[8] ZHANG Kun, XU Qing, WANG Yi-fan, A Hu-bao. Application of self-adaptive differential evolution algorithm in searching for critical slip surface of slope [J]. , 2017, 38(5): 1503-1509.
[9] FU Gui-jun, ZHANG Si-yuan, ZHANG Yu-jun. A rheological model for dual-pore-fracture rock mass and its application to finite element analysis of underground caverns [J]. , 2017, 38(2): 601-609.
[10] DENG Dong-ping, LI Liang. Three-dimensional limit equilibrium method for slope stability based on assumption of stress on slip surface [J]. , 2017, 38(1): 189-196.
[11] ZHOU Yong, WANG Zheng-zhen, . Improvement of internal stability analysis method of soil nailing wall [J]. , 2016, 37(S2): 356-362.
[12] HAN Long-qiang, WU Shun-chuan, LI Zhi-peng, . Study of non-proportional strength reduction method based on Hoek-Brown failure criterion [J]. , 2016, 37(S2): 690-696.
[13] SONG Zi-heng, YANG Qiang, LIU Yao-ru. Elastoplastic model for geomaterial considering effect of pore water pressure and its finite elements implementation [J]. , 2016, 37(S1): 500-508.
[14] GAO Ru-chao, LI Chun-guang, SUN Cong, ZHENG Hong, GE Xiu-run,. Lower bound finite element method for analyzing tenso-shear failure of slopes [J]. , 2016, 37(8): 2426-2432.
[15] YAN Chao ,LIU Song-yu ,JI Xiao-lei,. Research on a secondary sliding surface analysis approach based on strength reduction method [J]. , 2016, 37(4): 935-942.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Yun-ping, WANG Si-jing. Elastoplastic response of saturated rocks subjected to multilevel cyclic loading[J]. , 2010, 31(4): 1030 -1034 .
[2] DING Wan-tao, LEI Sheng-you. Triaxial tests on reinforced expansive soil under different reinforced modes[J]. , 2010, 31(4): 1147 -1150 .
[3] GU Shao-fu, LIU Yang-shao, LIU Shi-shun. Study of application of Asaoka method to settlement prediction[J]. , 2010, 31(7): 2238 -2240 .
[4] LIU Cai-ping,JU Yang,DUAN Qing-quan. Influence of internal characteristic length scale on dynamic crack propagating mechanism in rock materials[J]. , 2010, 31(S1): 91 -95 .
[5] CHEN Feng, TIAN Li-yong, LU Wei-hua. Analysis of influence of passing through shield tunnel on flood wall for Suzhou River[J]. , 2010, 31(12): 3855 -3860 .
[6] LU Tao, WANG Kong-wei, LI Jian-lin. Study of failure mode of sandstone under reservoir water pressures[J]. , 2011, 32(S1): 413 -0418 .
[7] HOU Tian-shun , XU Guang-li , LOU Jian-dong. Triaxial test for deformation and strength characteristics of light weight sand[J]. , 2011, 32(10): 2989 -2998 .
[8] CHEN Yi-jun , XUE Qiang , SUN Ke-ming , ZHAO Ying , WAN Yong . A mathematical model for rainfall erosion of steep soil slope and its solution[J]. , 2012, 33(5): 1579 -1584 .
[9] LU Qiang,WANG Zhan-Jiang,LI Jin,GUO Zhi-Yun,MEN Chao-Ju. Linear viscoelastic constitutive relation of loess under spherical stress wave[J]. , 2012, 33(11): 3292 -3298 .
[10] WANG Su,LU De-chun,DU Xiu-li. Research on underground structure seismic damage using static-dynamic coupling simulation method[J]. , 2012, 33(11): 3483 -3488 .