›› 2006, Vol. 27 ›› Issue (11): 1909-1914.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

FLAC-based numerical analyses of bearing capacity and failure mechanism of strip and circular footings on nonhomogeneous foundations

ZHAO Shao-fei1-3, LUAN Mao-tian1, 2, FAN Qing-lai1, 2, LÜ Ai-zhong3, YUAN Fan-fan4   

  1. 1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China; 2. Institute of Geotehnical Engineering, School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China; 3. School of Civil Engineering, Shandong University of Science and Technology, Qingdao 266510, China; 4. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2005-02-21 Online:2006-11-10 Published:2013-12-04

Abstract: Using the FLAC algorithm based on Lagrangian explicit finite difference method, numerical analyses are made on ultimate bearing capacity and failure behavior of strip footings and circular footings founded on nonhomogeneous clays foundations in which soil cohesion increases linearly with depth. Numerical results show that: (1) foundation failure area much more centralizes in surface layer and around footing sides as nonhomogeneous factor kB/c0 increases; (2) bearing capacity are estimated very conservatively if foundation nonhomogeneity is ignored even if kB/c0 is low; (3) bearing capacity factor of footing nonlinearly increases with kB/c0 and interface characteristic of footing and soil has less influence on the bearing capacity shape factor of circular footings except for the homogeneous foundation. Compared with numerical results, it is found that the approximate equations of Skempton and Peck et al. obviously overestimate bearing capacity factor Nc0 for nonhomogeneous soils.

Key words: nonhomogeneous foundation, strip footing, circular footing, ultimate bearing capacity, Lagrangian explicit finite difference procedure

CLC Number: 

  • TU 441
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZONG Zhong-ling, LU Xian-long, LI Qin-song,. Comparison test of compression and uplift on pressure-static and grouting micropiles [J]. , 2018, 39(S1): 362-368.
[2] YIN Jun-fan, LEI Yong, CHEN Qiu-nan, LIU Yi-xin, DENG Jia-zheng,. Upper bound analysis of the punching shear failure of cave roof in karst area [J]. , 2018, 39(8): 2837-2843.
[3] CAO Wen-gui, TAN Jian-hui, HU Wei-dong, . Upper bound of ultimate bearing capacity for the reinforced grounds [J]. , 2018, 39(6): 1955-1962.
[4] LI Ze, LIU Yi, ZHOU Yu, WANG Jun-xing,. Lower bound analysis of ultimate bearing capacity of stone masonry retaining wall slope using mixed numerical discretisation [J]. , 2018, 39(3): 1100-1108.
[5] KONG Gang-qiang, PENG Huai-feng, ZHU Xi , GU Hong-wei, ZHOU Li-duo,. Model tests on bearing capacity of longitudinal section shaped pile under lateral load [J]. , 2018, 39(1): 229-236.
[6] LEI Yong, YIN Jun-fan, CHEN Qiu-nan, YANG Wei,. Determination of ultimate bearing capacity of cave roof using limit analysis method [J]. , 2017, 38(7): 1926-1932.
[7] HU Wei-dong, CAO Wen-gui, YUAN Qing-song,. Upper bound solution for ultimate bearing capacity of ground adjacent to slope based on nonlinear failure criterion [J]. , 2017, 38(6): 1639-1646.
[8] JIU Yong-zhi, ZHU Yan-zhi,. Nonlinear analysis for bearing characteristics of vertically loaded single pile in non-homogeneous soil under excavation [J]. , 2017, 38(6): 1666-1674.
[9] KONG Gang-qiang, GU Hong-wei, CHE Ping, REN Lian-wei, PENG Huai-feng,. Impact of pile shaft shapes on vertical bearing capacity of belled piles [J]. , 2017, 38(2): 361-367.
[10] XIE Xin-yu, HAN Dong-dong, HUANG Li , WANG Zhong-jin, LIU Kai-fu,. Calculation of ultimate bearing capacity factor Nγ for rough strip footings [J]. , 2016, 37(S1): 209-214.
[11] SU Fang-mei, LIU Hai-xiao, LI Zhou. Analysis of ultimate bearing capacity of plate anchors in clay using a coupled Eulerian-Lagrangian method [J]. , 2016, 37(9): 2728-2736.
[12] GAO Ang,ZHANG Meng-xi ,ZHU Hua-chao,JIANG Sheng-wei,. Model tests on geocell-reinforced embankment under cyclic and static loadings [J]. , 2016, 37(7): 1921-1928.
[13] CHENG Li, LIU Yao-ru, PAN Yuan-wei, YANG Qiang, ZHOU Zhong, XUE Li-jun,. Research on ultimate bearing capacity of Jinping-I Arch Dam based on impoundment period inversion [J]. , 2016, 37(5): 1388-1398.
[14] ZHENG Gang , ZHOU Hai-zuo , CHENG Xue-song , LIU Jing-jin , ZHENG Shuai-qun, . Numerical analysis of the ultimate bearing capacity of the layered soil foundation with sand overlying clay [J]. , 2016, 37(5): 1475-1485.
[15] HU Wei-dong , CAO Wen-gui , YUAN Qing-song,. An upper-bound limit analysis of ultimate bearing capacity of ground foundation adjacent to slope based on asymmetric and bilateral failure mode [J]. , 2016, 37(10): 2787-2794.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JIANG Ling-fa, CHEN Shan-xiong, YU Zhong-jiu. Scattering around a liner of arbitrary shape in saturated soil under dilatational waves[J]. , 2009, 30(10): 3063 -3070 .
[2] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[3] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[4] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[5] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[6] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[7] WU Ke, LUAN Mao-tian, YANG Qing, FAN Qing-lai, WANG Zhi-yun. Effect of strength heterogeneity of soft clay on failure envelopes of bucket foundation subjected to combined loading[J]. , 2009, 30(3): 779 -784 .
[8] ZHANG Yu-min, SHENG Qian, ZHANG Yong-hui, ZHU Ze-qi. Artificial simulation of nonstationary artificial seismic motion for large-scale underground cavern group located in alpine gorge area[J]. , 2009, 30(S1): 41 -46 .
[9] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[10] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .