›› 2006, Vol. 27 ›› Issue (12): 2090-2098.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on variation of microstructure and mechanical properties of water-weakening slates

YANG Chun-he1, MAO Hai-jun1, WANG Xue-chao2, Li Xiao-hong3, CHEN Jianwen1   

  1. 1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Yellow River Engineering Planning and Design Co., Ltd., Zhengzhou 450003, China; 3. Key Lab for the Exploitation of Southwestern Resources& the Environmental Disaster Control Engineering, Chongqing University, Chongqing 400044, China
  • Received:2005-10-09 Online:2006-12-11 Published:2013-12-09

Abstract: The objective was to analyze the water-weakening feature and the weakening mechanism of the slate taken from the engineering of the west route of water transfer from south to north in China. Some experiments were done including measuring the change of water absorptions, contact angles, the microstructures of the minerals, the porosities and the strength of the rocks in different absorption by SEM, powder X-ray diffraction analysis and the triaxial compression experiment. Some conclusions are drawn from these experiments as follows: (1) when flooding into water, the absorption was affected by the location and density of the layer surfaces, and increased with the dipping time in the first few days till it kept stable at last; (2) in the SEM images the grains of the slates bulged and the structure relaxed, which made the porosity increased without confinement and the volume bulge lagged behind the water absorption; (3) the triaxial compression results show that the slates weakened and the peak strength of the slates declined with the absorption increased in minus logarithm law; (4) from the variety trends of microstructure and contact, the capillary force and the tension force of the slates decreased with the absorption, which made the adhesive force declined. In the macroscopic view, it is shown that the slates weakened with water. The slate is anisotropic which made the volume dilation in the perpendicular direction to the layers bigger than the parallel direction. As a result, the slate are easier to failure following the layer surfaces.

Key words: slate, water-weakening, microstructure, contact angle, rock mechanics

CLC Number: 

  • TU 452
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] TIAN Jun, LU Gao-ming, FENG Xia-ting, LI Yuan-hui, ZHANG Xi-wei. Experimental study of the microwave sensitivity of main rock-forming minerals [J]. Rock and Soil Mechanics, 2019, 40(6): 2066-2074.
[2] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[3] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[4] SU Guo-shao, YAN Si-zhou, YAN Zhao-fu, ZHAI Shao-bin, YAN Liu-bin, . Evolution characteristics of acoustic emission in rockburst process under true-triaxial loading conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1673-1682.
[5] WANG Yu, AI Qian, LI Jian-lin, DENG Hua-feng, . Damage characteristics of sandstone under different influence factors and its unloading failure meso-morphology properties [J]. Rock and Soil Mechanics, 2019, 40(4): 1341-1350.
[6] LI Xiao-zhao, QI Cheng-zhi, SHAO Zhu-shan, QU Xiao-lei, . Micromechanics-based model study of shear properties of brittle rocks [J]. Rock and Soil Mechanics, 2019, 40(4): 1358-1367.
[7] JIANG Qiang-qiang, LIU Lu-lu, JIAO Yu-yong, WANG Hao, . Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012.
[8] CHEN Wei-zhong, LI Fan-fan, MA Yong-shang, LEI Jiang, YU Hong-dan, XING Tian-hai, ZHENG You-lei, JIA Xiao-dong, . Development of a parallel-linkage triaxial testing machine for THM coupling in soft rock [J]. Rock and Soil Mechanics, 2019, 40(3): 1213-1220.
[9] WANG Deng-ke, SUN Liu-tao, WEI Jian-ping, . Microstructure evolution and fracturing mechanism of coal under thermal shock [J]. Rock and Soil Mechanics, 2019, 40(2): 529-538.
[10] ZHENG Guang-hui, XU Jin-yu, WANG Peng, FANG Xin-yu, WANG Pei-xi, WEN Ming, . Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling [J]. Rock and Soil Mechanics, 2019, 40(2): 632-641.
[11] SONG Hong-qiang, ZUO Jian-ping, CHEN Yan, LI Li-yun, HONG Zi-jie, . Revised energy drop coefficient based on energy characteristics in whole process of rock failure [J]. Rock and Soil Mechanics, 2019, 40(1): 91-98.
[12] DENG Hua-feng, WANG Chen-xi-jie, LI Jian-lin, ZHANG Yin-chai, WANG Wei, ZHANG Heng-bin. Influence mechanism of loading rate on tensile strength of sandstone [J]. , 2018, 39(S1): 79-88.
[13] FU Zi-guo, QIAO Deng-pan, GUO Zhong-lin, LI Ke-gang, XIE Jin-cheng, WANG Jia-xin. A model for calculating strength of ultra-fine tailings cemented hydraulic fill and its application [J]. , 2018, 39(9): 3147-3156.
[14] ZUO Yu-jun, SUN Wen-ji-bin, WU Zhong-hu, XU Yun-fei, . Experiment on permeability of shale under osmotic pressure and stress coupling [J]. , 2018, 39(9): 3253-3260.
[15] DENG Hua-feng, ZHANG Heng-bin, LI Jian-lin, WANG Chen-xi-jie, ZHANG Yin-chai, WANG Wei, HU Ya-yun. Effect of water-rock interaction on unloading mechanical properties and microstructure of sandstone [J]. , 2018, 39(7): 2344-2352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIE Xing-hua, WANG Guo-qing. A study of anti-seepage wall depth in thick overburden dam base[J]. , 2009, 30(9): 2708 -2712 .
[2] WANG Dong-lin, LUAN Mao-tian , YANG Qing. Experimental study of soil-water characteristic curve of remolded unsaturated clay[J]. , 2009, 30(3): 751 -756 .
[3] YE Wei-min, HUANG Wei, CHEN Bao, YU Chen1, WANG Ju. Diffuse double layer theory and volume change behavior of densely compacted Gaomiaozi bentonite[J]. , 2009, 30(7): 1899 -1903 .
[4] HU Yun-shi, SU Hui, CHENG Yi-chong, AI Zhi-yong. State space solution to three-dimensional consolidation of layered rock with compressible constituents[J]. , 2011, 32(S1): 176 -180 .
[5] ZHANG Hong , ZHENG Ying-ren , YANG Zhen , WANG Qian-yuan , GE Su-ming. Exploration of design methods of support structure in loess tunnel[J]. , 2009, 30(S2): 473 -478 .
[6] QI Wei , WANG Yong-zhi , JIANG Fu-wei. Determination of mechanical parameters of rock mass at a high arch dam on Yellow River[J]. , 2011, 32(S2): 478 -483 .
[7] CHEN Xu-guang , ZHANG Qiang-yong , DUAN Kang , LIU De-jun , ZHANG Ning . Research on application of optical sensor-based measuring method to model test[J]. , 2012, 33(5): 1409 -1415 .
[8] LIU Hai-ming , YANG Chun-he , ZHANG Chao , MAO Hai-jun , CAO Jing . Study of characteristics of power function Mohr strength criterion for tailings material under high pressures[J]. , 2012, 33(7): 1986 -1992 .
[9] QIU Xiang-bo , YANG Dong-mei , XU Bang-shu , LI Shu-cai . 3-D FLAC application in stability analysis of ventilator chamber of highway tunnel[J]. , 2003, 24(5): 751 -754 .
[10] XU Chao , CHEN Hong-shuai , SHI Zhi-long , REN Fei-fan,. Research on the mechanical behavior of soil-reinforcement interface by horizontal cyclic shear test[J]. , 2013, 34(6): 1553 -1559 .