›› 2006, Vol. 27 ›› Issue (12): 2099-2104.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experts’ weight model assessing embankment safety

GU Chong-shi1, WANG Zi-li1, LIU Cheng-dong2   

  1. 1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; 2. Nanjing Hydraulic Research Institute, Nanjing 210024, China
  • Received:2005-03-03 Online:2006-12-11 Published:2013-12-09

Abstract: The embankment safety is influenced by quantitative or qualitative factors. Some factors are fuzzy and uncertain. To evaluate embankment safety, this paper constructs the models obtaining subjective and objective weight of experts with the methods of fuzzy mathematics, pattern recognition and dynamic clustering. Based on above models, a model is proposed to build the synthetical weight model combining subjective weight and objective weight. The example shows that the proposed methods are feasible and reasonable in assessing embankment safety.

Key words: embankment, safety assessment, subjectivity and objectivity, models of obtaining experts&rsquo, weight

CLC Number: 

  • TV 223
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[2] PU He-fu, SONG Ding-bao, ZHENG Jun-jie, ZHOU Yang, YAN Jing, LI Zhan-yi. Non-linear self-weight consolidation model of saturated soft soil under large-strain condition [J]. Rock and Soil Mechanics, 2019, 40(5): 1683-1692.
[3] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[4] ZHENG Dong, HUANG Jin-song, LI Dian-qing, . An approach for predicting embankment settlement by integrating multi-source information [J]. Rock and Soil Mechanics, 2019, 40(2): 709-719.
[5] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[6] ZHANG Wen-sheng, LUO Qiang, JIANG Liang-wei, LI Ang, . Reliability analysis of soil slope considering moment estimation bias using small sample geotechnical parameters [J]. Rock and Soil Mechanics, 2019, 40(1): 315-324.
[7] LIU Yang-yang, GUO Zeng-zhang, LI Yong-qiang, LI You-peng. Risk assessment model of highway slope based on entropy weight set pair analysis and vehicle laser scanning [J]. Rock and Soil Mechanics, 2018, 39(S2): 131-141.
[8] WU Jian-tao, YE Xiao, LI Guo-wei, JIANG Chao, CAO Xue-shan, . Bearing and deformation behaviors of PHC pile-reinforced soft foundation under high embankment [J]. Rock and Soil Mechanics, 2018, 39(S2): 351-358.
[9] WANG Yi-min, YAN Cen, YU Heng, LI Qi. Experimental study of soil stress characteristics of geogrid-reinforced widened embankment under static loadings [J]. , 2018, 39(S1): 311-317.
[10] YANG Qi, ZHANG You-yi, LIU Hua-qiang, QIN Hua,. Model test on load-failure of a foamed lightweight soil subgrade [J]. , 2018, 39(9): 3121-3129.
[11] CHEN Fu-quan, LAI Feng-wen, LI Da-yong. State of the art in research of geosynthetic-reinforced embankment overlying voids [J]. , 2018, 39(9): 3362-3376.
[12] ZHAO Jian-jun, YU Jian-le, XIE Ming-li, CHAI He-jun, LI Tao, BU Fan, LIN Bing,. Physical model studies on fill embankment slope deformation mechanism under rainfall condition [J]. , 2018, 39(8): 2933-2940.
[13] LIANG Cheng, XU Chao, . Study on critical height of reinforced embankments with geocell layer [J]. , 2018, 39(8): 2984-2990.
[14] XIAO Guo-feng, CHEN Cong-xing. Simulation of progressive failure process and stability analysis method for rock block [J]. , 2018, 39(8): 3001-3010.
[15] LU Qing-yuan, LUO Qiang, JIANG Liang-wei, . Calculation of stress ratio of rigid pile to composite embankment [J]. , 2018, 39(7): 2473-2482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Hong-bo,GUO Xiao-hong. Research on calculation metheods of earth pressure on muti-arch tunnel for highway[J]. , 2009, 30(11): 3429 -3434 .
[2] LU Zu-de, CHEN Cong-xin, CHEN Jian-sheng, TONG Zhi-yi, ZUO Bao-cheng. Field shearing test for heavily weathered hornstone of Three Phase Project of Ling'ao Nuclear Power Station[J]. , 2009, 30(12): 3783 -3787 .
[3] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[4] PANG You-shi,LIU Han-long,GONG Yi-jun. Study of pullout tests of recoverable anchors[J]. , 2010, 31(6): 1813 -1816 .
[5] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[6] WANG Sheng-xin, LU Yong-xiang, YIN Ya-xiong, GUO Ding-yi. Experimental study of collapsiblity of gravel soil[J]. , 2010, 31(8): 2373 -2377 .
[7] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[8] LIU Wen-lian, WEI Li-de. Study of calculation model of anchors in strength reduction FEM[J]. , 2010, 31(12): 4021 -4026 .
[9] DENG Zong-wei, LENG Wu-ming, LI Zhi-yong, YUE Zhi-ping. Finite element analysis of time effect for coupled problem of temperature and stress fields in slope supported by shotcrete[J]. , 2009, 30(4): 1153 -1158 .
[10] OUYANG Jun , XU Qian-jun , SHI Ke-bin , YAN Xin-jun , GONG Jing-wei. Temperature-driven parameter reduction finite element method for slope stability analysis of earth-rockfill dam[J]. , 2011, 32(8): 2549 -2554 .