›› 2006, Vol. 27 ›› Issue (3): 466-470.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Testing and numerical analysis of load transfer mechanism of PHC pile

LÜ Wen-tian, WANG Yong-he, LENG Wu-ming   

  1. School of Civil and Architectural Engineering, Central South University, Changsha 410075, China
  • Received:2004-07-30 Online:2006-03-10 Published:2013-11-06

Abstract: Base on the static loading tests on prestressed high-strength concrete piles with strain gauges at the top and toe of pile and at interfaces of soil layer, the load transfer mechanism of PHC piles was studied; and the behaviors of skin resistance and inner force were analyzed. Based on the static load test on prestressed high-strength concrete piles (PHC piles) of a practical engineering, using the elastoplastic model, nonlinear interface elements and nonlinear soil elements, by the finite element method, pile-soil interaction of PHC pile in the soft soil area were simulated. The results of analysis indicate that there are many differences between the numerical predictions and the experimental results; however, it shows that the calculated distribution trend is in good agreement with the experimental results.

Key words: PHC piles, finite element method, load transfer mechanism, skin resistance

CLC Number: 

  • TU 473
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[2] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[3] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[4] SONG Jia, GU Quan, XU Cheng-shun, DU Xiu-li,. Implementation of fully explicit method for dynamic equation of saturated soil in OpenSees [J]. , 2018, 39(9): 3477-3485.
[5] SONG Jia, DU Xiu-li, XU Cheng-shun, SUN Bao-yin,. Research on the dynamic responses of saturated porous media-pile foundation-superstructure system [J]. , 2018, 39(8): 3061-3070.
[6] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
[7] LUO Xian-qi, ZHENG An-xing,. Application of extended finite element method in modelling fracture of rock mass [J]. , 2018, 39(2): 728-734.
[8] LIU Zhong-yu, ZHANG Jia-chao, ZHENG Zhan-lei, GUAN Cong. Finite element analysis of two-dimensional Biot’s consolidation with Hansbo’s flow [J]. Rock and Soil Mechanics, 2018, 39(12): 4617-4626.
[9] LIU Zhen-ping, DU Gen-ming, CAI Jie, ZHOU Fan, LIU Jian, BIAN Kang,. Seamless coupling method of 3DGIS combined with 3DFEM simulation based on MeshPy [J]. , 2018, 39(10): 3841-3852.
[10] TU Yi-liang, LIU Xin-rong, ZHONG Zu-liang, DU Li-bing, WANG Peng, . The unity of three types of slope failure criteria [J]. , 2018, 39(1): 173-180.
[11] ZOU De-gao, LIU Suo, CHEN Kai, KONG Xian-jing, YU Xiang,. Static and dynamic analysis of seismic response nonlinearity for geotechnical engineering using quadtree mesh and polygon scaled boundary finite element method [J]. , 2017, 38(S2): 33-40.
[12] HE Wei-jie, YANG Dong-ying, CUI Zhou-fei. Comparison of theoretical and numerical solution for vertical vibration of a pile considering transverse inertia effect [J]. , 2017, 38(9): 2757-2763.
[13] LUO Tao, E. T. Ooi, A. H. C Chan, FU Shao-jun,. A combined DEM-SBFEM for modelling particle breakage of rock-fill materials [J]. , 2017, 38(5): 1463-1471.
[14] WANG Rong-hua, ZHANG Qing, XIA Xiao-zhou. Fully coupled modeling of fractured saturated porous medium using extended finite element method [J]. , 2017, 38(5): 1489-1496.
[15] ZHANG Kun, XU Qing, WANG Yi-fan, A Hu-bao. Application of self-adaptive differential evolution algorithm in searching for critical slip surface of slope [J]. , 2017, 38(5): 1503-1509.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Long-hai, WANG Ming-nian, ZHAO Dong-ping, JI Yan-lei. Study of deformation controlling measures for large-span shallow tunnel[J]. , 2010, 31(2): 577 -581 .
[2] FU Ce-jian. Experimental study of mechanical properties of saline silt[J]. , 2010, 31(S1): 193 -197 .
[3] LIU Ming-gui,LIU Shao-bo,ZHANG Guo-hua. Application of general-purpose computation on GPUs to geotechnical engineering[J]. , 2010, 31(9): 3019 -3024 .
[4] LIU Zhong-xin, ZHU Hui-li, CHEN Zheng-hong. Analysis of geological disasters caused by heavy rainfall along Jianghuai Section of Beijing-Kowloon Railway[J]. , 2010, 31(10): 3254 -3259 .
[5] Lü Xi-lin,HUANG Mao-song,QIAN Jian-gu. Strength parameter of sands under true triaxial test[J]. , 2009, 30(4): 981 -984 .
[6] LEI Peng , SU Huai-zhi, ZHANG Gui-jin. Study of interval parameters back analysis of dam body and rock foundation based on RNN model[J]. , 2011, 32(2): 547 -552 .
[7] WEI Ming-yao, WANG En-yuan, LIU Xiao-fei, WANG Chao. Numerical simulation of rockburst prevention effect by blasting pressure relief in deep coal seam[J]. , 2011, 32(8): 2539 -2543 .
[8] CHU Fu-yong ,ZHU Jun-gao ,JIA Hua ,AN Shu-hong. Experimental study of mechanical behaviour of coarse-grained soil in unloading and reloading[J]. , 2012, 33(4): 1061 -1066 .
[9] CHEN Yi-jun , XUE Qiang , SUN Ke-ming , ZHAO Ying , WAN Yong . A mathematical model for rainfall erosion of steep soil slope and its solution[J]. , 2012, 33(5): 1579 -1584 .
[10] DENG Jin-gen , ZHU Hai-yan , XIE Yu-hong , ZHAO Jing-ying , . Rock mechanical properties and rock breaking mechanism of the complex formation of the western South China Sea oilfields[J]. , 2012, 33(7): 2097 -2102 .